
 1

A formal definition of an object-oriented
data/knowledge model*

Jonas A. Montilva C.

Universidad de Los Andes,
Facultad de Ingenieria,

Departamento de Computación,
Grupo de Investigación en Ingeniería de Datos y Conocimiento

Merida, Venezuela
e-mail: jonas@ing.ula.ve

The integration of databases and knowledge bases has become the purpose of many new AI
technologies such as Intelligent Databases, Knowledge Base Management Systems, and Expert
Database Systems. Object orientation has long been recognized as an appropriate approach for
achieving the integration of data and knowledge management. This paper presents an object-
oriented model for representing, storing and manipulating data and knowledge. The model is the
result of extending the Smalltalk-80 object model, in order to incorporate the constructs needed
to support object-oriented data/knowledge management. The emphasis in this paper is the
formalization of the modelling constructs provided by the model. Formalization is considered an
essential requirement for understanding, communicating, implementing and using properly the
model. The formal definition of the model was accomplished using a well-known formal
specification language, the Z Notation, which uses a model-based approach to formalization.

1 Introduction

The integration of databases and knowledge bases (DB/KB integration, for brevity) is being
addressed by new domains of computer science such as expert, deductive, object-oriented and
intelligent databases. A common characteristic of these areas is that the DB/KB integration is
achieved by integrating existing software technologies (e.g. models, languages, and systems)
from different areas or disciplines. Intelligent databases, for instance, have emerged from the
integration of models and languages from the following areas: object-orientation, expert systems,
databases, and hypermedia [21].
 The ability of the Smalltalk-80 (ST-80) language, and its underlying object model [12], to
represent using objects the structure, behaviour and relationships of entities or concepts of a
given application domain, as well as its capability to organize these objects into classes, makes it
a good candidate for representing both data and knowledge. It lacks, however, the ability to
represent default values, attached predicates, constraints, and composite objects, which are

* ACTAS del V Congreso Iberoamericano de Inteligencia Artificial. (Caracas, Octubre, 1994). McGraw-Hill,
 pp. 62-75.

 2

essential in representing knowledge. Besides, the ST-80 language does not support persistence
which is crucial in data/knowledge management. Therefore, to be useful for the representation
and management of data and knowledge, both the ST-80 language and its underlying object
model must be extended with features borrowed from object-oriented databases and knowledge
representation.
 In this paper, we present an object-oriented model for the management of data and
knowledge bases, called the D/K model. This model is the result of extending the ST-80 model
with features borrowed from ORION -an object-oriented database management system [13]- and
a frame-based knowledge representation scheme. The model is intended to be used in the design,
creation, manipulation, access, and query of object-oriented data/knowledge bases. A
data/knowledge base is defined here as a collection of persistent objects that represents data and
knowledge about entities or concepts in a particular application domain.
 A description of the D/K model is given here in terms of the concepts it supports and the
structure and semantics of its components. In order to describe the meaning of the constructs, the
view of the world assumed by the model is considered here as an important aspect of the
definition of the model. The meaning of each construct is explained by defining a denotational
relationship between the model and the view. This relationship indicates what construct should
be used to represent a given aspect of that part of real world being modelled.
 The emphasis here is, however, in the formal definition of the constructs of the model. We
believe that the formalisation of a model is an essential step of its design, because it allows the
designer to explain with precision and without ambiguity the structure and semantics of the
components of the model. The Z Notation [23], a formal specification language based on Set
Theory and Predicate Calculus, was used to formalize the constructs of the model. This language
is used for specifying the properties of each of the constructs of the D/K model. A formal
definition of the notion of data/knowledge base is given using this notation too.
 The organisation of the paper is as follows. Section 2 describes how the model was
designed. Section 3 introduces the components of the model. The semantics of the constructs of
the model is given in Section 4. A formal definition of the constructs of the model and its
modelling rules is presented in Section 5. Finally, the operations of the model are enumerated in
Section 6. Complete details of the formal definition of the model and the syntax and semantics of
its associated language, the D/K Language, are given in [20].

2 The design of D/K model

The ST-80 language is based on an object-oriented model whose basic modelling constructs are
the following: object, class, instance variable, method and message. This model is founded on
concepts such as data abstraction, encapsulation, multiple inheritance, extensibility and name
overloading. A basic feature, which makes the ST-80 model a good candidate for manipulating
data/knowledge bases, is that classes are also objects. A class, therefore, has its own variables
and methods and can be modified dynamically in the same way than its instances are.
 Since the ST-80 model does not support database concepts, such as persistence, schema
definition and evolution and query, a data model was therefore required to extend the ST-80
model. The ORION model was chosen because of its compatibility with the ST-80 model, its
expressive power for representing composite objects, and its semantics for schema evolution
which is essential for the management of DB/KBs.

 3

 Concepts such as constraints, attached predicates, default and generic values, which are
required in object-oriented knowledge bases, were borrowed from frame-based knowledge
representation schemes in AI. The lack of standards in this domain precluded the selection of a
particular model or scheme. For this reason, we opted for building a frame reference model
which describes formally most of the basic features exhibited by frame knowledge representation
schemes. It is described elsewhere (see [20]).
 The integration of concepts, constructs and operations coming from three different models
was recognized as a complex problem for which a software integration process was needed.
Since no methods for the integration of models existed, by the time we started this research, we
opted for developing our own method for pursuing the integration of the three models (see [19,
20]).
 The integration method is composed by four phases: pre-integration, conceptual analysis,
conceptual comparison and conceptual integration. The pre-integration phase is concerned with
the selection of: (1) the models to be integrated; (2) the integration strategy to be used (i.e.,
extension, transference and combination); and (3) the order of integration to be applied if more
than two models are to be integrated. The conceptual analysis phase entails the identification and
description of the features of each model being integrated. Its purpose is to gain an
understanding of the properties of each model. For each participating model, a core - a subset
made of selected constructs, operations and rules of the model - is defined based on the
integration requirements [17]. Each model core is then represented, or formally defined, using an
appropriate modelling notation. The result of the representation process of each model core is
referred here to as core schema. The conceptual comparison phase involves the identification of
similarities and differences between the features of the model cores. The resulting list of
similarities and differences is used in the next phase to help identify the points of integration
between the cores. Finally, in the conceptual integration phase, the model cores are merged using
the core schemata and according to the selected strategy. The integrated model is validated
against the given set of integration requirements (see [17]) and refined by iterating the process
until an appropriate solution is found.
 This method was later extended to provide a more comprehensive framework for the
integration of data and knowledge bases, in which the integration can be achieved at three
different levels: models, languages and systems (see [18, 20]).

3 Concepts and components of the D/K model

The D/K model is an object-oriented data/knowledge model. It includes a set of object-oriented
constructs, operations and rules for managing data/knowledge bases. These components are
founded on a set of concepts provided by the ST-80 object model [12], the ORION data model
[13] and a frame-based knowledge representation model based on KEE [11], STROBE [14], and
the Minsky´s notion of frame [16].
 From the object-oriented language realm, the model supports object identity by surrogates, a
weak view of encapsulation with private and subclass visible protections, class intension
separated from class extensions, class specialization, multiple inheritance, metaclasses,
parametric polymorphism, message name overloading, redefinition of inherited attributes and
constraints, aggregation and message passing. From object-oriented databases, the model inherits
composition by attributes using exclusive and shared references, persistence by reachability and
orthogonal to instances, and schema evolution. Finally, from frame-based knowledge

 4

representation, the model uses procedural attachment, default values specified as attribute facets,
generic values specified as class attributes, and constraint definition.
 In addition to its three components - constructs, operations and modelling rules (see Table
1) - the model includes a rich set of classes, most of which are orientated towards the target
applications of the model: multimedia and spatial applications. This set is organized in four
levels. The core level includes a set of basic classes for defining integers, floats, characters,
collections, etc. The graph level comprises a set of classes for supporting graph concepts, such
as directed graphs, undirected graphs, chains, paths, cycles, and circuits. The multimedia level
is made of a set of classes which implements multimedia abstract data types (e.g., text, graphics,
and images) and hypermedia concepts. Finally, the spatial level includes the notion of spatial
object and a set of classes which implement abstract data types required for spatial applications.
Basic and specialised classes are the building blocks for creating data/knowledge bases in
multimedia and spatial applications. Specialized classes are described in [20].
 The purpose of these four level of classes is to make available to the user the support needed
to built multimedia and spatial data/knowledge bases. The user creates the schema of a
data/knowledge base by specialising classes provided by these levels. The objects stored in the
database are created by instantiating either the specialised classes of the model or the classes
created by the user.

CONSTRUCTS OPERATIONS RULES
Object Definition Inheritance
Class Evolution Persistence

Class extension Manipulation Class Hierarchy
Instance Query Composition
Attribute

Facet
Constraint

Method
Message

Table 1: The components of the D/K model

4. The semantics of the constructs of the model

The constructs are the symbols that the user employs to represent knowledge about the objects of
interest in a given application domain. Each construct represents some aspect of that part of the
world being modelled. Using the constructs as representational tools requires an understanding
of the way in which we conceive the world, i.e., a view of the world. In order to describe the
semantics of the constructs, we therefore describe first the view of the world assumed by the
model and then map the constructs of the model to this view.

 5

 The view used to design the D/K model is based on the ontological theory proposed by M.
Bunge [10]. According to this theory, the world is composed of things. A thing may be an
entity (concrete object) or an abstract object. All things possess properties. Things that possess
the same set of properties form a kind. The set of all values associated with the properties of a
thing at a given time is called the state of the thing. A thing changes its state with time. A change
of state, called state transformation, is caused by an event.. Things comply with laws. A law is
an invariant relation between two or more properties or a restriction on the values of a property.
 This view of the world is supported by the model through the following constructs: objects,
classes, class extensions, instances, attributes, facets, constraints, methods, and messages. Each
of these constructs is used to represent or denote a particular element of the view. The
denotational relationship between the constructs of the model and the elements of the view of
the world is defined by the mapping shown in Table 2.
 Objects are the basic modelling units in the D/K model. An object is a construct that
represents or stands for a domain object. Each domain object that is relevant to the problem
being modelled is represented in the data/knowledge base by an object. An object represents
either an entity or a concept from the application domain. Domain objects are organized, in the
view, into kinds. Classes and class extensions are two constructs of the model that capture the
notion of kind in the given view of the world. A class represents the intension of a kind of
domain objects (i.e., their common properties), while a class extension captures the notion of
extension of a kind, that is, the set of the domain objects referred to by the kind. Each class
extension is made of a set of objects called instances. An instance represents an entity or
individual object of the domain.

Element of the View D/K Construct
Domain object Object

Entity or Concept Instance
Kind Class

Property Attribute
Law Facet
Law Constraint

Action Method
Event Message

Table 2: Denotational relationship between the D/K model and its view of the world

Each instance is made of another type of construct called attribute. An attribute represents a
known property of a domain object. Each attribute has associated one or more values. The notion
of state of a domain object is captured by a set of attribute values which is also called the state of
the object. Facets are constructs associated with the definition of attributes. Laws that determine
the lawful state space of the domain objects of a kind may be represented using facets. Facets are
therefore used to specify the domain of the values of an attribute and to constrain the value of an

 6

attribute.
 Complex laws are represented using the construct constraint. A constraint denotes a
restriction imposed on properties values of a domain object or an invariant relation between two
or more properties of the object. Constraints can be either associated with the definition of an
attribute using facets or defined explicitly using slots.
 Methods are used in the D/K model to represent those actions - operations or processes - of
the application domain that change the state of the domain objects. Messages represent events
that signal the beginning of an action in the application domain. Messages are used in a
data/knowledge base to trigger the execution of methods.
 The formal definition of these constructs is given in the next section.

5 Formalising the constructs and rules of the model

We used a model-oriented approach to the formalisation of the constructs of the model. In this
approach, the state of each construct and the operations that change this state are represented in
terms of a formal language. The so-called Z notation [23] was used for this purpose. We
preferred the model-based approach to others, such as the algebraic approach [9] and the set-
tuple approach [15], for two reasons. Firstly, the model-based approach, as used in Z, is more
consistent with the orientation of the D/K model. Each construct is defined in terms of its
structure and behaviour, using the Z-schema symbol, in a similar way as the D/K model defines
classes. Secondly, the Z-schemata of the D/K model can be easily refined in order to obtain a
specification for the implementation of the model, which helps to reduce the effort required in
building a prototype for the model.
 In this section, the main constructs of the model are formally defined in terms of the Z
notation. Each z-schema defines the structure of a construct and captures some details of its
semantics. A complete definition of all the constructs is given in [20], together with the
semantics of the operations which are defined separately (see Section 6).

5.1 Objects

The basic unit of modelling in the D/K model is the object. There are three kinds of objects in
the core level: instances, classes, and metaclasses.
 Each object has a surrogate called object identifier (objId, for short). In addition to this
identifier, an object has associated a class and a set of values. The class describes the structure
(attributes) and behaviour (methods) of the object. The values represent the state of the object at
a given time. Depending on its kind, an object refers to its class either by the class name or the
class identifier. For convenience, we will refer to the objId and the class reference of an object
by the following z-schema:

objId: IDENT
objClass: ClassName | IDENT

ObjectIdentification

 7

5.2 Classes

Classification is essential in the D/K model. Instead of describing each object separately, a group
of objects with similar attributes is collectively described by means of a class. A class defines
the structure and behaviour of each of its objects, called instances. The structure of the instances
of a class is specified by attribute definitions, in the body of the class; meanwhile the behaviour
is specified by methods.
 Contrary to other object-oriented data models (e.g., ORION [13] and OSAM* [22]) which
overload the construct class with an intensional and extensional role, classes in the D/K model
have only assigned the intensional function, that is, to define the structure and behaviour of its
instances. The extensional function of a class (i.e., the collection of its instances) is assigned to
another construct called class extension. The advantages of this approach are discussed in
section 5.4. The state of a class in the D/K model is represented by the z-schema shown below.
 Each D/K class is an object that, in addition to its object identifier, has a unique name used
also for reference purposes. ClassName refers to the set of all the class names used in particular
data/knowledge base schema.
 The class of a class is another object called metaclass. A class refers to its metaclass using
the metaclass identifier (invariant 1). As specified by the second invariant, a metaclass is unique
to each class. A metaclass describes the structure (class attributes) and behaviour (class
methods) of a class as an object.

 Each class has at least one superclass and zero, one or more subclasses (multiple
inheritance). Each class provides references to each of its super or subclasses through their
names. The relationships between classes is captured by a separated z-schema named
ClassHierarchy (see Section 5.3). As specified by the last invariant, all the attributes,
constraints, and methods of the superclasses are inherited by the class. Superclasses may be
added or deleted dynamically to a class, as described by the schema evolution operations of the
model listed in Section 6.

 8

 Class

ObjectIdentification [metaclassId/objClass]
name: ClassName
superclasses: F1 ClassName
subclasses: F ClassName
instAttributes: F NAME
instAttrDefs: NAME → AttrDefinition
constraints: F NAME
constraintDefs: NAME → Constraint
instMethods: F MethodName
instMethDict: MethodName → Method
extensionNames: F NAME
extensionDict: NAME → ClassExtension

(1) metaclassId ∈ IDENT
(2) ∃1 m: Metaclass • metaclassId = m.objId
(3) ∀ s: superclasses •
 class(s).instAttributes ⊆ instAttributes ∧
 class(s).constraints ⊆ constraints ∧
 class(s).instMethods ⊆ instMethods ∧
[other invariants omitted]

 A class has associated two kinds of attributes: instance attributes and class attributes.
Instance attributes determine the structure of each instance of the class, i.e., each instance has
one value for each attribute specified by the variable instAttributes. Class attributes , on the
other hand, are attributes of the class as an instance of a metaclass and are therefore attached to
the metaclass itself. Class attribute values are common and directly accessible to all instances of
the class.
 Each attribute specified in a class has associated a set of facets called attribute definition. An
attribute definition specifies the properties of an attribute, e.g., the domain of the attribute values,
constraints on these values, attached messages, and the default value to be used when the value is
unknown. Attribute names are unique within the class in which they are used. The state of an
attribute definition is represented as follows:
 AttrDefinition

 facets: FacetType → FacetValue

 ∀ f a v: facets •
 (f = domain ∧ v ∈ ClassName) ∨
 (f = default ∧ v ∈ Instance) ∨
 (f = constraint ∧ v ∈ Constraint) ∨
 (f = uniqueOn ∧ v ∈ ClassExtName) ∨
 (f ∈ {composite, dependent, exclusive, nullAccepted} ∧ v ∈ Boolean) ∨
 (f ∈ {ifNeeded, ifAdded, IfRemoved} ∧ v ∈ Message)

where:
FacetType ::= domain | default | constraint | composite | dependent | exclusive |
 ifNeeded | ifAdded | ifRemoved | nullAccepted | uniqueOn

 9

FacetValue = ClassName | Instance | Constraint | Message | Boolean | ClassExtName

A class may also have associated a set of constraint slots which are used to define semantic
integrity constraints. The state space of a constraint in the D/K model is captured by the
following z-schema:
 Constraint

condition: Proposition
checkOn: F MethodName
ifSatisfied: F Message
ifViolated: F Message

A constraint has a condition that is evaluated when a specific method, indicated by the variable
checkOn, is executed. The variables ifSatisfied and ifViolated indicate the actions to be taken
(messages) when a condition is satisfied or rejected, respectively.
 The following example illustrates the definition of a class using the syntax of the D/K
language, an object-oriented language based on the D/K model [20].

 DKClass subclassName: #Road
 superclasses: { SimpleChain[RoadSegment] }
 classExtName: Roads
 classExtType: Dictionary keyedBy: roadNum
 instAttributes:
 { rsegments: { redefines: progression;
 composition: true ;
 dependent: true }
 roadNum: { redefines: name;
 uniqueOn: Roads;
 nullAccepted: false }
 roadType: { domain: String;
 constraint: { condition:
 (roadType = "motorway " |
 roadType = "roadTypeA" |
 roadType = "roadTypeB") }
 length: { domain: Float;
 ifNeeded: [self calcLength] }
 ... }

5.3 Class hierarchies

The model supports two types of relationships between classes: specialisation and composition.
These two relationships are essential in building a data/knowledge base schema; they define two
kinds of hierarchies: class hierarchy and class-composition hierarchy.
 A new class is created by specialising an existing class(es). The new class inherits all the
attributes, constraints, and methods defined for each of its superclasses. This relationship creates
a class structure called class hierarchy which can be graphically represented by a directed
acyclic graph whose nodes denote classes and its edges the relationship itself. The state space of

 10

a class hierarchy is modelled by the following z-schema.
 For any hierarchy of classes, there exists a root class named in the z-schema as topClass.
Except for the topClass, each class has at least one superclass (invariants 2 and 3). The set
subclassRel includes all the direct subclass/superclass relationships between the classes of the
hierarchy, as defined by invariant 4. It is assumed that each class has a unique name within the
hierarchy (invariant 5). Since a class hierarchy forms a directed acyclic graph rooted at the class
topClass, a class cannot be a superclass of itself and any cyclic relationship between two or more
classes are not allowed (invariant 6). The function allSupersOf returns all direct or indirect
superclasses of a given class, whereas the function class returns a class given its name.

ClassHierarchy
classes: F Class
topClass: ClassName
subclassRel: ClassName ↔ ClassName

(1) class(topClass) ∈ classes
(2) topClass ∉ dom subclassesRel
(3) ∀ c: classes | c.name ≠ topClass • c.name ∈ dom subclassRel
(4) ∀ (n,m): subclassRel • n ∈ class(n).subclasses ∧ m ∈ class(n).superclasses
(5) ∀ x,y: classes | x ≠ y • x.name ≠ y.name
(6) ∀ (n,m): subclassRel • n ≠ m ∧
 (m,n) ∉ subclassRel ∧
 ¬∃ x: ClassName | (x,n) ∈ subclassRel ∧ x ∈ allSupersOf(n)

 The composition or partOf relationship is supported in the D/K model through the
aggregation of attributes. The semantics of the composition relationship has been borrowed from
the ORION data model [13]. A composite object is a tuple object in which some of its values are
references to its component objects. As in the ORION model, the semantics of a reference in the
D/K model has been extended to accommodate the composition relationship. The definition of
the composition relationship is therefore embedded into the attribute definitions of the composite
class definition, as indicated by the AttrDefinition z-schema, in the previous subsection.

5.4 Instances

Each object in the D/K model is created by instantiating its class using the create instance
methods. An object created in this way is called an instance. The structure and behaviour of an
instance is completely defined by its class. Each object has a state which is made of values
determined by the kind of the instance. The D/K model has three different kinds of instances:
basic, aggregate, and collection.
 A basic instance is a self-identifying object whose class is one of the basic classes of the
model: integer, float, character, string, and boolean. A basic instance differs from the two other
kinds in the following aspects: (1) a basic instance does not have attributes; its state is made of a
single value, and (2) a basic instance does not have a surrogate, because it uniquely identifies
itself (i.e. its identifier is its own value).
 An aggregate instance is made of a collection of attributes. Its state space is represented
below.

 11

The state of an aggregate instance is made of one or more attributes. Each attribute has a value
(AttValue) which could be a basic instance (e.g. an integer, a float, or a string), a reference to
another object, or the constant nil .
 The properties of each attribute of an instance are defined by the instance's class. As
specified by the third invariant, each attribute value must be consistent with its corresponding
attribute definition. In particular, if an attribute value has already been initialised or set to a value
different than nil , it must be an instance of the class specified as the domain of the attribute in
the definition of the class. The function isInstanceOf determines the type of correspondence
between a value and a class.
A collection instance, on the other hand, is an object that collects one or more instances of one or
more classes. A collection instance can be homogeneous or heterogeneous. It is said to be
homogeneous if all its members are instances of the same class, otherwise, it is heterogeneous.

AggregateInstance
ObjectIdentification
state: Name → AttValue

 (1) dom state = class(objClass).instAttributes
 (2) ∀ (n, v): state | v ≠ nil •
 (∃1 (m, w): NAME → AttrDefinition |

 n = m ∧ m a w ∈ class(objClass).instAttrDef •
 v isInstanceOf (w getValueAt domain)

 Each collection object is an instance of a collection class. A collection class may also be
classified as homogeneous or heterogeneous. In the set of system-defined classes provided by the
model, String, Text, List, SetOf, ArrayOf, ListOf, OrderedCollectionOf, Dictionary, and
DictionaryOf are all homogeneous collection classes; whereas Set, Array, and OrderedCollection
are heterogeneous collection classes.
 Each instance of a homogeneous collection class is a collection object whose members
(other instances) are all of the same specified class. The following z-schema specifies the state
space of a collection instance:

CollectionInstance[X]
 AggregateInstance
 members: F X
 kind: HomogeneousCollectionName

5.4 Class extension

In the D/K model, the extensional function of a class is attributed to a construct called class
extension. A class extension is a collection instance whose members are all references to the
persistent instances of the associated class or of its subclasses, as defined next:

ClassExtension
CollectionInstance[InstID]

 12

extName: Name
class: ClassName

∀ i: members • (i.objClass = class) ∨ (i.objClass isSubclassOf class)
kind ∈ ClassExtensionType

The kind of a class extension is an homogeneous collection class, such as arrayOf, setOf, and
dictionaryOf. Note that, according to the first invariant, the extension of a class is made not only
of instances of the class but also of instances of its subclasses. This is because each persistent
instance of a class is also a persistent instance of its superclass. The function isSubclassOf
determines whether a class is a subclass (direct or not) of another class.
 We have favoured, in the D/K model, the separation of the intensional and extensional
functions of a class for the following reasons. Firstly, the distinction provides more flexibility to
the user by allowing him/her to select the kind of extension that is more convenient for the
instances of a class. Instead of having the extension always predefined as a set, the user may
specify, in the definition of a class, a preferred or appropriate type for the class extension.
Secondly, separating the extension from a class makes it possible to associate more than one
class extension to the same class. An instance of a class may appear in more than one class
extension. The user decides during instantiation in which class extension(s) the instance should
be stored. This feature is particularly important for supporting versions. The different versions of
the instances of a class can be organised using class extensions.
 As defined by the schema above, class extensions are collection objects and can be
manipulated as any other instance of collection classes. In addition to the collection object
operations, the extensions of the same class can be manipulated using algebraic operations such
as union, intersection, and difference.
 This characteristic of a class has an implication for the way queries are formulated. Since
class extensions are separated from their classes, a query message for selecting one or more
instances of a class C cannot be sent to C. Instead query messages must be sent to the class
extensions associated with C.

5.7 Data/knowledge bases

The notion of data/knowledge base may now be introduced. A data/knowledge base is a
collection of objects (classes and instances) which represent static and dynamic properties of a
particular application domain. This notion integrates the concepts of database and database
schema, as used in object-oriented databases.
 A database in the D/K model is a collection of persistent objects. A persistent object may be
an instance of a class or a class extension. Instances, in particular, represent factual or
extensional knowledge about the application domain of the database. Class extensions are used
for organising and accessing the instances in a database.
 The state space of a D/K database is represented as follow:

Database
 dbContent: F DBObject
 dbTable: IDENT → DBObject

 13

 ran dbTable = dbContent
 dbTable = {p: DBObject • p.objId a p}

The function dbTable determines the access to the objects stored in the database through their
identifiers.
 On the other hand, the database schema is defined in the D/K model as a collection of
classes that represent abstract or intensional knowledge about an application domain. Classes in
a database schema are related through the specialisation (isa) relationship and the composition
(partOf) relationship. These two relationships are captured by the two hierarchies - class
hierarchy and class composition hierarchy - already discussed in Section 5.3. A database schema
is formally defined as:

 DKSchema == ClassHierarchy ∨ ClassCompositionHierarchy
An important property of databases and database schemas in the D/K model is that both are
made of objects. The practical implication of this is that the user is allowed to create, manipulate,
and access both classes and instances simultaneously and in the same way, because there is no
distinction between them. Classes may be created dynamically together with their instances.
Based on this property, we specify the state space of a data/knowledge base by merging the z-
schemata Database and DKSchema, as shown below.
 Note that the function classExtTable relates the classes of a data/knowledge base with their
class extensions. The variable classNames defines the class name space for each data/knowledge
base.

 Data/KnowledgeBase

DKSchema
Database
classExtTable: ClassName → F ClassExtension
classNames: F ClassName

∀ i: dbContent • class(i.objClass) ∈ classes
U ran classExtTable ⊂ dbContent
classNames = { c:classes • c.name }
∀ c: dom classExtTable • (∃ e: classExtTable(c) | e.class = c)
dom classExtTable ⊆ classNames

 In the next section, we introduce the operations provided by the D/K model for the creation,
manipulation, modification and query of data/knowledge bases.

6 The operations of the model

Object-oriented models are characterized by a large and ever expandable number of operations
associated to classes. In this section, we present only a classification of these operations, as
required for defining, manipulating, and querying data/knowledge bases in the D/K model. The
classification and semantics of these operations are adapted from the taxonomy and semantics of
schema evolution used by the ORION model [1]. Appropriate modifications to that taxonomy

 14

were made in order to accommodate the constructs class extensions, constraints, and attached
message which are not supported by the ORION model. The resulting classification of the D/K
operations is the following:
1.- Schema definition and evolution operations:
 1.1.- Class definition operations:
 1.1.1.- Create a new class.
 1.2.- Changes to the definition of an existing class:
 1.2.1.- Add a new attribute definition.
 1.2.2.- Change/delete an existing attribute definition.
 1.2.3.- Add a new instance/class method.
 1.2.4.- Change/delete an existing method.
 1.2.5.- Add a new slot constraint.
 1.2.6.- Change/delete an existing slot constraint.
 1.3.- Accessing the definition of an existing class.
 1.4.- Adding class extensions to a class.
 1.5.- Class hierarchy operations:
 1.5.1.- Delete a class from a hierarchy.
 1.5.2.- Add/delete a superclass to an existing subclass.
 1.6.- Class composition operations:
 1.6.1.- Add a composite attribute to a class.
 1.6.2.- Change/delete a composite attribute from a class.
 1.6.3.- Change the dependency/sharability of a composite attribute.

 2.- Data manipulation operations:
 2.1.- Create transitory/persistence instances of a class.
 2.2.- Delete one or more instances from a class extension.
 2.3.- Set/update the value of an attribute.
 2.4.- Get the value of an attribute.

3.- Query operations:
 3.1.- Select a subcollection of instances that satisfies a predicate.
 3.2.- Apply a block of code to each instance of a class extension.
 3.3.- Select a subcollection of instances that does not satisfy a predicate.
 3.4.- Union, intersection, and difference between extensions of a class.

A complete description of each of these operations and their semantics are presented in [20].
These operations are based on the message-passing computational model used by the ST-80
model. Each operation is a message sent to an object which could be an instance, a class, a class
extension, etc. For example, the definition and creation of a class is a message sent to DKClass,
the superclass of all the classes of the D/K model. Similarly, the modification of a class, and the
creation of instances are messages sent to the class itself. Queries are also messages sent to class
extensions.

7 Conclusions

We have introduced in this paper a novel model for the integration of data and knowledge bases,
called the D/K model. It was described by presenting its structure; defining its constructs,

 15

operations and modelling rules; and introducing its data/knowledge definition, manipulation and
query operations.
 In addition to introducing a new data/knowledge model, we believe that this paper has also
made two important contributions to the integration of data and knowledge bases. First, the
model here described was designed by applying a new method for the integration of data and
knowledge bases (see [20]). Applying this method to the process of integrating data and
knowledge was crucial for dealing with the complexity of the process and ensuring a more
comprehensive conceptual integration. Second, the paper has shown a viable and elegant way of
formalising a model. We considered here two aspects of the formalisation: the definition of the
semantics of the constructs of the model and the formal definition of the static and behavioural
properties of these constructs.
 The meaning of each construct was presented using the notion of view of the world. A
denotational relationship between the constructs of the model and the elements of this view was
defined, in order to give an account of the meaning of each construct. The description of the
view of the world is an important aspect that complements the definition of a model. This aspect
is usually omitted in the definition of many data models and knowledge representation
formalisms. The view and the denotational relationship, which explains what each construct
denotes, are particularly useful for representing the application domain during the conceptual
design of a data/knowledge base.
 The formalisation of the constructs of the model was presented in terms of a widely used
formal specification language, the Z Notation, which uses a model-based approach. The value of
the formalisation effort is the precision and consistency achieved in the definition of each
construct of the model. In our case, the most important product of this exercise was, however,
the great deal of understanding of the object-oriented approach that we achieved by using a
formal approach to the definition of the model.
 The attempt to formalise the model is by no means complete. The formal definition of each
operation of the model is still pending. Nevertheless, we believe that the formal specification of
the constructs as given here is for the time being sufficient to understand the details of the model,
as required by its future implementation.
 Similar data/knowledge models, that were not influential in the design of the D/K Model, are
OSAM [22], MPL/0 [22] and Postgres. OSAM is a semantic data model that supports object-
oriented concepts. MPL/0 is a multiparadigm language designed to support the development of
data/knowledge bases. It extends the OSAM model to support generic units, typing and
behavioural associations. OSAM and MPL/0 use their own notations. Except for the ability to
represent rules, the MPL/O and the D/K models have similar expressive power. D/K model
features not provided by MPL/O are the redefinition of inherited attributes, constraints and
methods and procedural attachment. Postgres, on the other hand, is an extension of the relational
data model that incorporates object-oriented and rule-based concepts. The D/K model supports
metaclasses, parameterized classes, class attributes, default and generic values, dependent and
exclusive composition, and explicit constraints; which are features not supported by Postgres.
The main difference between the D/K model and the aforementioned models is, however, the
uniformity provided by the former. The D/K model uses the concepts and syntax of the ST-80
language, which is the most representative language of the object-oriented paradigm.
 Similar attempts to formalise object-oriented data models are reported in the literature. The
formal definitions given by C. Beeri [4], Y. Wand [24], and C. Lecluse, et al [15] are probably

 16

the most relevant ones in the area. Our approach was inspired in the work of Y. Wand. We used
the same ontological view of the world, which is proposed by M. Bunge [10], in order to explain
the meaning of object-oriented constructs. The main difference between our approach and
Wang's is that ours rests on the definition of the structural and behavioural properties of the
constructs; whereas the latter concentrates on the denotational properties.
 The D/K model is actually being used for developing a prototype of a data/knowledge base
object manager and a library of specialized classes for supporting the development of data and
knowledge bases in geographical and multimedia applications.

References

[1] Banerjee, J., Kim, W., Kim, H.-J, and Korth, H.F. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. In Proc. ACM-SIGMOD Int. Conf. on Data
Management, 1987, pp. 311-323.

[2] Banks, B.J., Deen, S.M., Garcia, L.A., Harding, S.M., and Herath, A.C. Design and

Implementation of Deal. In Deen, S.M. and Thomas, G.P. (Eds.) Data and Knowledge
Base Integration, Pitman, London, 1990, pp. 29-62.

[3] Batini, C., Lenzereni, M., and Navathe, S.B. A Comparative Analysis of Methodologies for

Database Schema Integration. ACM Computing Surveys, Vol.18, No.4, December, 1986,
323-364.

[4] Beeri, C. A formal approach to object-oriented databases. Data & Knowledge Engineering,

Vol. 5, No. 4, 1990, pp.353-382.

[5] Beynon-Davies, P. Expert Database Systems - A Gentle Introduction. McGraw-Hill,

London, 1991.

[6] Brachman, R.J. and Schmolze, J. An Overview of the KL-ONE Knowledge Representation

System. In Mylopoulos, J. and Brodie, M.L. (eds.) Artificial Intelligence & Databases,
Morgan Kauffmann, San Mateo, CA, 1989.

[7] Brodie, M.L., et al. Knowledge Base Management Systems: Discussions from the Working

Group. In Kerschberg, L. (Ed.) Expert Database Systems, Proceedings from the First
International Workshop, Benjamin Cummings, 1986, 19-33.

[8] Brodie, M.L. and Mylopoulos, J. Knowledge Bases and Databases: Semantic vs.

Computational Theories of Information. In Ariav, G. and Clifford, J. (Eds.), New
Directions for Database Systems, Ablex, NY, 1986, pp.186-218.

[9] Breu, R. Algebraic Specification Techniques in Object Oriented Programming

Environments. Springer-Verlag, Lecture Notes in Computer Science No. 562, 1991.

[10] Bunge, M. Treatise on Basic Philosophy, Vol. 3: Ontology I: The Furniture of the World.

Reidel, Boston, 1977.

 17

[11] Fikes, R. and Kehler, T. The Role of Frame-Based Representation in Reasoning. Comm.
ACM, Vol.28, No.9, September, 1985, 904-920.

[12] Goldberg, A. and Robson, A. Smalltalk-80, The Language. Addison-Wesley, 1989.

[13] Kim, W. Introduction to Object-Oriented Databases. The MIT Press, Massachussets, 1990.

[14] Lafue, G. and Smith, R. A Modular Toolkit for Knowledge Management. In Mylopoulos, J.

and Brodie, M.L. (Eds), Readings in Artificial Intelligence and Databases, Morgan
Kaufmann, California, 1989, pp. 592-598.

[15] Lecluse, C., Richard, P., and Velez, F. O2, an Object-Oriented Data Model. In Zdonik, S.B.

and Maier, D. (Eds.) Readings in Object-Oriented Database Systems, Morgan Kaufmann,
1990, pp. 227-236.

[16] Minsky, M. A Framework for Representing Knowledge. In Brachman, R.J. and Levesque,

H.J. (Eds.) Readings in Knowledge Representation, Morgan Kaufmann, 1885.

[17] Montilva, J.A. A requirements definition for multimedia intelligent database systems.

Technical report. University of Leeds, School of Computer Studies, Leeds, UK,
September,1990.

[18] Montilva, J.A. and Roberts, S.A. A Methodological Framework for the Integration of Data,

Information, and Knowledge Management. Research Report No. 92-20, University of
Leeds, School of Computer Studies, Leeds, UK, September, 1992.

[19] Montilva, J.A. and Roberts, S.A. A method for the design of intelligent database models.

Research Report, University of Leeds, School of Computer Studies, Leeds, UK, January,
1993.

[20] Montilva, J.A. An integration method applied to the design of a data/knowledge model for

multimedia and spatial applications. Ph.D. Thesis. University of Leeds, School of
Computer Studies, Leeds, UK, January, 1993.

[21] Parsaye, K., Chignell, M. Khoshafian, S., and Wong, H. Intelligent Databases: Object-

Oriented, Deductive Hypermedia Technologies, John Wiley and Sons, 1989.

[22] Shyy, Y.M. and Su, S.Y.W. MPL/0: a Multi-paradigm Language Facility for

Data/Knowledge Base Programming. In Deen, S.M. and Thomas, G.P. (Eds.) Data and
Knowledge Base Integration, Pitman, London, 1990, pp.63-83.

[23] Spivey, J.M. The Z Notation: A Reference Manual, 2nd edition, Prentice Hall, 1992.

[24] Wand, Y. A Proposal for a Formal Model of Objects. In Kim, W. and Lochovsky, F.H.

(Eds.) Object-Oriented Concepts, Databases, and Applications, Addison-Wesley, 1989,
pp.537-559

