Cuarta prueba escrita

Se desea tener el TAD **Polinomio2D** cuya estructura tiene el vector de coeficientes, el número de términos ($n \le 30$), el vector de exponentes de la variable X y el vector de exponentes de la variable Y del término asociado al subíndice del vector

```
Class Polinomio2D { float coef[30]; unsigned short n, x[30], y[30]; } con las operaciones:
```

Firma o prototipo de la operación en C++	Descripción
Void leer(Polinomio2D*);	Lee los valores desde el teclado y devuelve el
	polinomio
Unsigned short terminos(Polinomio2D);	Regresa el número de términos del polinomio
Void termino(Polinomio2D, unsigned short, float,	Regresa el término (coeficiente, exponente de X
unsigned short, unsigned short);	y exponente de Y) en la posición solicitada en el
	2do parámetro
Void suma(Polinomio2D, Polinomio2D,	Regresa la suma de los dos polinomios
Polinomio2D *);	
Void resta(Polinomio2D, Polinomio2D,	Regresa la resta de los dos polinomios
Polinomio2D *);	
Bool igual(Polinomio2D, Polinomio2D);	Regresa cierto si son iguales
Void multiplicacion(Polinomio2D, Polinomio2D,	Regresa la multiplicación de los dos polinomios
Polinomio2D *);	
Void derivadaX(Polinomio2D, Polinomio2D *);	Regresa la derivada con respecto de X del polinomio
Void derivadaY(Polinomio2D, Polinomio2D*);	Regresa la derivada con respecto de Y del polinomio
float valor(Polinomio2D, float, float);	Regresa el resultado de evaluar el polinomio en
,,,	los valores de X y de Y dados en el 2do y 3er
	parámetro, respectivamente
Void escribir(Polinomio2D);	Despliega en pantalla siguiendo el formato
, ,,,	estándar ($aX^2+bXY^3+cY^2+d$)

Nota: DEBE SEGUIR AL PIE DE LA LETRA LA ESPECIFICACIÓN DADA, NO PUEDE CAMBIAR EL PROTOTIPO DE LOS SUBPROGRAMAS Y DEBE HACER UN PROGRAMA PRINCIPAL CON EL MENÚ PARA PROBAR CADA SUBPROGRAMA.