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Abstract 

This paper describes a method to select from an original huge data set, representative 

data to train, test, and validate neural network models. It was called Stratified/PCA and 

applies stratification and principal component analysis to efficiently reduce the amount of 

observations (records) and original variables. The new set keeps a high amount of the original 

data set. The performance of neural network models built using those reduced data sets is 

very similar to that of neural network models built using the entire data set. In fact, it is 

both, significantly better and consistent than any known data selection method, including 

those based on random selection criterion.  A kind of recognition pattern can be found 

within Stratified/PCA. Therefore, this novel technique can be applied as a data mining or 

preprocessing method to efficiently build non linear models using neural networks. 
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1. Introduction  

Frequently, when historical data is collected, a large number of observations are stored 

and, with each observation, a large number of variables are included. One reason for the 

large size of these data sets may be that once the initial cost of setting up the data collection 

mechanism is incurred, the additional cost of collecting more data is comparatively small 

and may avoid future data collection costs if unforeseen use of the data is later identified. 

Historical series of great volumes of data can be taken advantage of the generation of new 

information. It can be originated with the presence of inherent data which was indirectly 

collected when was created the original source of data.  

Neural networks are generally recognized as an important model-building technique 

that can take advantage of the existence of historical data sets. There are numerous 
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examples of successful applications using this technique [6], [17]. However, large number 

of observations and variables in historical data present challenging and interesting problems 

for neural networks. The entire data set available for building neural network models is 

usually divided into two categories: training and testing. All relevant characteristics of the 

problem should be represented in each of these categories, otherwise poor models would be 

built or misleading performance results would be reported. If the data used to train the 

neural network is not representative of the entire data set, then the model will perform 

poorly on the data selected for testing the trained neural network. On the other hand, a 

neural network trained with representative data will perform poorly during testing if the 

data set selected for testing purposes is not representative of the entire data set. Another 

problem that neural network builders face when using data sets with large number of 

observations and variables is the large amount of time that they take to train the networks 

and the increased complexity of the resulting network architecture. 

This paper deals with the design and implementation of a reliable and consistent data 

preprocessing method to reduce observations and variables from large data sets. Field of 

exploratory data analysis is eventually aimed to analyze those data sets using both 

univariate or multivariate statistical techniques and, heuristic techniques well-known like 

data mining. [17], [18]. Data exploration involves certain prior processes before building 

neural network models able to reach an acceptable performance to predict or recognize 

patterns. In that case, well combined procedures using multivariate and statistical 

techniques are useful as alternative tools capable of aiming a data pre-processing. This 

particular method integrates the concepts of stratification and principal component analysis 

to select representative observations and to eliminate redundant variables from these data 

sets. Neural network models trained and tested with data sets selected from an original data 

set using this method perform better than neural network models trained and tested with 

data sets  selected  randomly from the same original data set.  In addition, neural network 

models built with a reduced number of variables selected by this method perform quite 

similar to models built using all the variables in the original data set. [4], [5]  
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2. Reducing the Number of Observations and the Number of Variables 

Stratification reduces the number of observations using the dependent variable as 

screening variable and ignores the effect of independent variables. Therefore, it cannot be 

used to eliminate unnecessary independent variables. [2], [4], [5]. Stratified sampling 

technique, [3], also known as a variance reduction technique, aims to achieve a reduction in 

size but still maintaining a data set with similar statistical properties to the entire data. The 

main property of this technique is to achieve a minimum deviation between the mean value 

for the same variable founded with the selected sample and the entire data.  

Large data sets, however, often include a large number of independent variables and 

observations. It is very likely that some of the variables are irrelevant for the problem at 

hand. Also, a group of variables may carry the same information about a particular 

problem. Eliminating irrelevant variables from a data set or replacing a group of variables 

with one variable carrying the same information can significantly reduce the size of the 

data. Neural network models built using this reduced data are likely to have fewer 

computational units and require less training time. [4], [8], [14]. 

Principal Component Analysis (PCA) [10], [13] is a proven statistical method that can 

reduce the number of variables in a data set with minimal loss of relevant information. PCA 

uses the covariance matrix and the correlation matrix to create a new and smaller set of 

variables with principal components equivalent to the principal components of the original 

set of variables. But in doing so, PCA keeps all of the observations in the original data set. 

Therefore, even if PCA is used to reduce the dimension of a data set, the problem of 

selecting truly representative training and test sets required to build reliable neural network 

models still remains. In other words, the principal components in the samples selected for 

these subsets should be as close to the principal components in the original data set as 

possible.  

The proposed method is able to reduce both observations and variables from an original 

data set. Therefore, it can also be used to select truly representative training and test data sets 

to build reliable neural networks.  This method integrates stratification and PCA and is 

referred to in this paper as Stratified/PCA  [4]. 

Some relevant characteristics of this Stratified/PCA method are: 

• The dependent and independent variables are examined as a whole. 
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• The new set of independent variables is based on the concept of explained variance.  

• The new set of independent variables is in the same orthonormal basis.  

• It relies not only on the variances provided by the first principal components, but also on 

the correlation between the minor components and the dependent variable.  

In addition to the characteristics mentioned above, this method relies strongly on 

guidelines established by Kaiser H. [10], Jolliffe I. [9], Mardia K. et al. [13], to improve the 

reduction of the number of independent variables. These guidelines suggest that  

• The eigenvalues of the correlation matrix R or covariance matrix Σ of the independent 

variables are the appropriate mechanism to reduce the number of independent variables.  

• The correlation between the reduced independent variables and the dependent variable 

is important in determining the final reduced set of independent variables. 

• The explained variance for the reduced independent variables guarantees that these new 

variables will be representative of the original independent variables. 

• The correlation between the principal components and the original independent 

variables is recommended as a way to determine whether or not the new independent 

variables will be representative. 

Before describing the Stratified/PCA method, some previous efforts made to address this 

problem are worth noting. Kramer, M. [11], [12] introduced the concept of autoassociative 

neural networks as a mechanism to reduce the number of independent variables. With a 

network architecture of five layers, Kramer’s network uses the first two layers (input and 

mapping layers) to reduce the original independent variables to a new set of independent 

variables in the intermediate layer (the bottleneck layer). From the intermediate layer, the 

reduced set of variables is used as input variables to recover the original independent variables 

using the next two other layers (mapping and output layers). This reduction process uses 

nonlinear functions in the mapping and bottleneck layers as a mechanism to recover the non-

linearity present in the original variables.  

Huge data sets with a large number of variables would be difficult to train using Kramer’s 

network because of the five-layer network and the number of nodes required in the training 

process. Another drawback of this proposed method is that the intermediate layer includes an 

arbitrary number of reduced independent variables and it is not clear how to determine their 

number. 
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Similar to Kramer's work, Tan et al. [16] introduced the concept of IT-net (Input-Training-

net) as a variation of Kramer's autoassociative neural networks. They proposed a neural 

network with a single hidden layer to reduce data size. The single hidden layer includes the 

reduced independent variables. Tan et al., analyze the correlation matrix of the original 

independent variables, before reducing the variables using the IT-net. They create groups of 

independent variables highly correlated among them and select only the first principal 

component for every group of correlated variables. The rest of the variables remain the same 

since they are themselves independent. After completing this primary reduction, the new 

temporary set of independent variables determined by the selected principal components and 

the variables that do not belong to any group are used as input variables in the IT-net network. 

Those first principal components might belong to a different orthonormal basis since every 

group of correlated variables might determine different dimensional spaces. Moreover, the 

original variables not being grouped remain in the original dimensional space.  

The stratified/PCA preserves the reduced independent variables in the same orthonormal 

basis. The values of the reduced independent variables in the selected samples would keep a 

high degree of correspondence with those of the entire data. These issues are not met by IT-

net because the selected principal components do not represent the entire original variables. 

Dong et al. [7] developed a model with two three-layer networks to compress and 

decompress data with a nonlinear behavior within the variables. They assumed that if PCA is 

applied to nonlinear problems, important information held in the last principal components 

(minor components) could be ignored due to their very small variances. They assumed that an 

excessive number of principal components would be present if the minor components were 

also being kept. If this reduction were applied to large data sets with a large number of 

observations where the variables are separated in one dependent variable and the rest as 

independent variables, the previous assumption would not consider the importance of the 

correlation of both the independent and dependent variables.  

The stratified/PCA method analyzes not only the variances provided by the first principal 

components, but also the correlation between the minor components and the dependent 

variable. [9]. This method adds any minor components correlated with the dependent variable. 

In fact, this method showed that part of the nonlinearity of the independent variables could be 

captured.  
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Dong et al. [8] randomly separated the data sets for training. The stratified/PCA method 

proved that the training data sets selected from the original data set by stratification were more 

reliable. [4], [5]. Therefore, it can be applied as a data mining or preprocessing method to 

efficiently build non linear models using neural networks. [17]. 

 

2.1. The Stratified/PCA Method 

The Stratified/PCA method can be described as the following sequence of steps: 

Step 1. The entire data is separated in strata using the dependent variable like a variable of 

stratification as described in the previous section. The new set of observations of the 

dependent variable must be selected samples with a high confidence of representation of the 

entire data. Data is separated into L strata such that the summation of the sizes for every 

stratum i, Ni, must be the size N of the entire data,  ∑=
L

iNN , and the mean for the 

stratification variable of the entire data must be ∑
⋅
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Figure 1. Stratification of the main variable 
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Step 2.  The eigenvalues of the correlation matrix are computed for every stratum of the 

entire data. By stratum, those values will be compared and evaluated one by one between 

the entire data and the entire sample. PCA is applied to every stratum, i in the entire data. 

Eigenvectors Ei
[pop] and eigenvalues Λi

[pop] are estimated for every stratum from the 

correlation matrix R
i
[pop] of the independent variables X

i
[pop].  
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Figure 2. Principal components of the entire data in every stratum 
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Step 3. Stratified samples of size ni are selected from every stratum of size Ni of the entire 

data.  
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Figure 3. Stratification process between the entire data and the selected samples
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Step 4. PCA is applied to the independent variables X[smp] for the entire sample selected in 

step 3. Using the correlation matrix R[smp] of the independent variables, the eigenvectors 

E[smp] and eigenvalues Λ[smp] are estimated.  
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Figure 4. Principal components for the entire sample 
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Step 5. PCA is applied to the independent variables Xi
[smp] for every stratum i of the 

selected sample X[smp] obtained in Step 3. Using the correlation matrix R
i
[smp] of the 

independent variables, the eigenvectors Ei
[smp] and eigenvalues Λi

[smp] are estimated. 
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Figure 5. Principal components of the sample in every stratum 
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Step 6. The eigenvalues Λi
[smp] and the correlation matrix Ri

[smp] are evaluated stratum by 

stratum using the guidelines established by Kaiser H. [10], Jolliffe I. [9], Mardia K. et al. 

[13]. The eigenvalues for every stratum Λi
[smp] in the selected sample X[smp] greater than a 

given threshold value allow the selection of the first candidates of principal components ik
1
. 
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Figure 6. Selection of the k1 principal components 

 

 



 12

 

Step 7. The percentage of explained variance PSi given by the eigenvalues Λ
i
[smp] of the i

k
1
 

principal components for every stratum in the selected sample is compared with the 

percentage of explained variance PPi given by the corresponding eigenvalues Λ
i
[pop] of the 

i
k

1
 principal components for every stratum in the entire data. If every percentage in PSi is 

greater than its corresponding percentages in PPi, then the stratified sample is selected and 

the last eigenvectors should determine the new orthogonal axis for the new independent 

variables. Otherwise, a new stratified sample is selected from Step 3. 
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Step 8. The principal component scores for the selected sample Z[smp] are estimated by 

projecting their original values onto the orthonormal basis. The last principal components 

k2 that might be retained are determined based on the guidelines previously described. The 

correlation matrix between the principal component scores Z[smp] and the dependent 

variable Y[smp] determine whether or not new principal components will be retained from 

the minor components. The correlation of the selected k2 principal components must exceed 

the given threshold value. If the correlation of the minor components with the dependent 

variable is not significant, then no minor components are added. 
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Step 9. The final value of the selected principal components k are the first k1 of them, which 

is the maximum of the i
k1 (s) (steps 6 and 7), and the last k2 principal components (step 8). 

This final selection is extracted from the entire matrix of principal component scores Z[smp] 

and they represent the new non-correlated variables explaining a high percentage of the 

variance of the entire set of the original independent variables. 

 

k << p

k = SELECTED PRINCIPAL COMPONENTS = k1 + k2 
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Figure 9. Final selection of the reduced variable set 
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3. Stratified/PCA andNeural Networks  

The reliability of the Stratified/PCA method was evaluated in a manner similar to that 

used to evaluate the stratified method. We first created an original data set by selecting 

discrete values from nine independent terms, 3
x

xe4 , 
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x
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 π
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cos , 






 π
x

4

cos , 2
1

x , 

( )xsin
e

π , 3
x00756.0 , and 2

x169.0  and for values of x in the interval 0 ≤ x ≥ 25. Each discrete 

value of x is denoted by xi where i is an integer between 1 and 7,500, where 7,500 is the 

number of data points created. The values of the terms were grouped as observations in the 

vectors X1 through X9 for every xi. The summation of the nine terms describes the function 

shown on Figure 10.  
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Figure 10. Experimental function 

 

The original data set of 7,500 records was divided into two sets using the 

Stratified/PCA method. One subset of 85% of the data is used to train neural network 

models and the rest is used to test the previously trained neural networks. Additionally, two 

pairs of reduced new subsets, one from the set of 85% of data and the other from the set of 

15% of data were created using the stratified method (without PCA) and random selection. 

Neural networks were trained using those two reduced 85% subset of data. Finally, the 

reduced sets of data from the data set of 7,500 records were created using separately the 

three different previously mentioned reduction methods: Stratified/PCA, the stratification, 

and random selection. Same numbers of set were selected by each method applying seven 

different sample sizes: 250, 500, 800, 1600, 2,000, 3,000 and 4,500 samples. At this 

instance, the presence of a reliable number of variables in the reduced data set is a 

consequence of applying a threshold value of lambda. The stratified/PCA method was 
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applied with two different values of lambda, 0.7 (suggested by Jolliffe [9]) and 1 (suggested 

by Kaiser [10]). 

Figure 11 shows a guide to construct and generalize neural networks using examples 

selected by Stratified/PCA. The following steps describe a general guide when 

Straified/PCA and a Neural Network Software is used. [14].  

• Setup the Original Archive recognizing the set of variables for each observation. 

• Apply Straified/PCA to the original set using stratification at the first stage. Two sets 

are extracted. Almost 85% of the original data as a set of example data to apply the 

whole method. The rest of data (validation data) is used for neural network model 

validation.  

• These two sets are used as input data in the Stratified/PCA process to create the new 

reduced data set. Two main objectives are reached at this stage: reliable stratified 

samples of observations and a new set of latent variables with a high percentage of the 

explained variance for the entire set of variables. 

• At this stage the correlation matrix is prepared as the input data to use PCA. The new 

latent variables are identified and selected for every stratified samples. This process is 

applied in the same way to the different sample sizes from the examples data. Similarly, 

the validation data is prepared by reducing the original variables in an equivalent set of 

latent variables to those created from the examples data. 

• These new sets of examples with less variables and observations are used as training 

and testing data sets in the construction and validation of neural network models. The 

network architecture was similar for each built model: input nodes, hidden nodes, 

hidden layers, activation functions, initial weights and output nodes. Additionally, the 

set of parameters and evaluation measurements were similar for each neural network 

model: leaning rate, momentum value, backpropagation algorithm, Root Mean Square 

Error (RMSE), etc. 

• Finally, the generalization of each trained and tested model was validated with the 

validation data set. Outcomes of consistency and reliability were evaluated using the 

similar method with several replications to different samples of observations at different 

sizes. 
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Figure 11. A block diagram to describe the use of the preprocessing method of 

Stratified/PCA and Neural Networks 

 

In this experimental case, seven different neural networks were trained for each of the 

three selection methods: random, stratified and stratified/PCA. Seven data sets were 

prepared using the previous algorithm for each sample size indicated above. Each network 

was tested by measuring the RMSE value which is a mechanism to identify the ability of 
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replication of the dependent variable when the observed and computed values are 

compared. 

Table 1. RMSE values of the performance of neural network models tested 

Validation using 1500 examples

Data set Stratified/PCA

size Random Stratified Lambda > 1 Lambda > 0.7

Average 0.62717 0.39482 0.61886 0.56625

Standard deviation 0.28382 0.11100 0.16342 0.12659  

 

Table 1 shows the average and the standard deviation of the RMSE values over the 

seven models built for each of the sampling methods discussed above. The Stratified/PCA 

method reduced the nine independent variables in the original data set to five (with lambda 

set to 1) and seven (with lambda set to 0.7). The table shows that stratification, as was 

previously shown [4], can create test and training data to consistently build accurate neural 

networks. Moreover, the size of the training data can be significantly reduced (from 6,375 

samples to 250 samples in this case) with the corresponding decrease in training time. The 

Stratified/PCA method, with lambda set at 0.7, yielded similar results to those of 

stratification and significantly better results than the random method while still reducing the 

number of variables from nine to seven. 

Figures 12, 13 and 14 show the plot of the dependent variable for the validation data set 

and the models built with Stratified/PCA data sets of 500 and 800 observations and using the 

Jolliffe and Kaiser threshold values. Figures for the other five sample sizes show similar 

results. To facilitate visual comparison, they are shown with the plot of the entire data set 

(7,500 records) and the test set (1,500 records) in the first line. The plot on the left side 

corresponds to the training data set using Stratified/PCA methods on both lambda threshold 

values (1 or 0.7). The plot on the right side shows the prediction curves using the test data set 

provided by stratified/PCA method for both lambda threshold values. 
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Figure 12. Validation data set of 1,500 observations. 

 

 

Figure 13. Training and Validation of Neural Networks models built using Straified/PCA 

with samples of 500 observations. 

 

 

Figure 14. Training and Validation of Neural Networks models built using Straified/PCA 

with samples of 800 observations. 
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4. Conclusions 

Historical data sets often include a large number of observations and variables that 

present difficult problems for building neural networks. Large numbers of observations lead 

to very long training times and large number of variables lead to large network 

architectures. In addition, neural networks require the selection of training and test sets that 

are representative of the entire data set. The random method used to either reduce the size 

of the original data set, or to select training and test sets from the original data can yield 

neural networks with widely different performances.  

The Stratified/PCA method presented here can be used to consistently select samples 

from a data set that are representative of the entire data set and therefore maintain the 

original problem characteristics. The method also eliminates unnecessary variables or 

replaces groups of collinear variables with a smaller set of independent variables. The end 

result is that by reducing the number of observations and variables in a large data set, the 

amount of time required to train neural networks is reduced. Also, a reduction in the 

number of variables leads to networks with simpler architectures. Furthermore, this method 

can be used to select representative samples to build training and test sets needed to build 

and test consistent and reliable neural networks. 
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