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FIG. 23.1. Internal versus external representations.




A JOINT PERSPECTIVE ON THE IDEA OF REPRESENTATION IN LEARNING AND DOING MATHEMATICS

Gerald A. Goldin
Rutgers University

James J. Kaput, 

University of Massachusetts / Dartmouth

For some time each of us in his own way has been developing the concept of representation in the psychology of mathematical learning and problem solving (Goldin, 1982, 1983, 1987, 1988a, 1988b, 1990, 1992a, 1992b; Goldin & Herscovics, 1991a, 1991b; Kaput, 1979, 1983, 1985, 1987, 1989, 1991, 1992, 1993). In this chapter we explore the compatibility of our ideas, and begin to develop a joint perspective—one that we hope can lay a foundation for future theoretical work in mathematics education based on representations and symbol systems. We believe that the constructs offered here provide a sound basis for further development.

In approaching the issue of representation, we recognize the complexity and magnitude of the challenge. On the one hand, there is a long history of attempts to make sense of the many forms taken by representational activity, attempts that have achieved various degrees of success; on the other hand, some mathematics education researchers reject the construct of representation entirely (e.g., Marton and Neuman, chapter 19, this volume). Nonetheless, we feel that the sharpening of certain notions related to representation, and development of a way to discuss them more systematically and precisely can greatly benefit the field of mathematics education—and can clarify some of the points of disagreement among researchers.

We also recognize that making a commitment to particular ways of theorizing 

entails certain costs. Even the use of a term such as representation to describe mathematical activity may presuppose a perspective and set of commitments that some researchers are not willing to make; when we further begin to speak of "internal versus external" representations, the number of participants in the conversation may shrink even more. However, we attempt both to demonstrate the value of these constructs and to answer various objections to them. We know full well that the language we choose to use influences us in turn through the tacit assumptions it may embody; indeed, relationships between thought and language are among the underlying themes of this chapter. Thus we seek to make at least some of our assumptions as explicit as possible, and to offer an approach that is sufficiently flexible to accommodate a reasonable range of epistemological perspectives.

In the first section we describe what we mean by representation, distinguish internal from external representation, discuss relations between representations, and provide an introduction to the systematicity of representational configurations. The second section addresses directly various objections to these ideas, particularly those associated with radical constructivism. In the third section we describe various types of representational systems and media in which they are embodied. This section includes brief discussions of linked external representations, imagistic or analogical systems (external and internal), formal representational systems (external and internal), and psychological models based on various types of internal representational systems. The fourth section is devoted to basic types of representational acts and structures. In the fifth section we discuss the growth of representational systems, followed by a section that characterizes the building of powerful systems of representation as an overarching goal of mathematics learning and development. We conclude the chapter with a brief discussion of how the concept of "representation" is essential to understanding constructive processes in the learning and doing of mathematics, and mention some open issues related to our developing joint perspective.

WHAT DO WE MEAN BY “REPRESENTATION”?

Roughly speaking, a representation is a configuration of some kind that, as a whole or part by part, corresponds to, is referentially associated with, stands for, symbolizes, interacts in a special manner with, or otherwise represents something else    (Palmer, 1977). We say "roughly speaking" because among other complex characteristics, representations do not occur in isolation. They usually belong to highly structured systems, either personal and idiosyncratic or cultural and conventional. These have been termed “symbol schemes" (Kaput, 1987) or "representational systems" (Goldin, 1987; Lesh, Landau, & Hamilton, 1983). Furthermore, the representing relationship is in general not fixed, nor is its specific nature a necessary feature of the representation. This is because, inevitably 

and intrinsically, an interaction or act of interpretation is involved in the relation between that which is representing and that which is represented (von Glasersfeld, 1987). Indeed, rather than beginning with "representations" as we do here, we could as an alternative have begun with a discussion of "representational acts."

Internal Versus External Representation

A distinction that is very important for the psychology of learning and doing mathematics, and fundamental to our joint perspective, is that between internal and external systems of representation (see Fig. 23.1). Elsewhere this has sometimes been characterized as a distinction between the signified (internal) and the signifier (external); thus our approach bears a loose kinship with a similar distinction made by Saussure (1959). However, we regard the relation of "signifying" not as fixed and unidirectional, but as changeable and reversible.

We use the term internal representation to refer to possible mental configurations of individuals, such as learners or problem solvers. Of course, being internal, such configurations are not directly observable. As teachers or researchers we regularly (and necessarily) infer mental configurations in our students or subjects from what they say or do, that is, from their external behavior. Often we make such inferences tacitly rather than explicitly, and sometimes we consciously set out to develop particular sorts of internal representations in our students through teaching activity.

Let us elaborate briefly on this. To some extent an individual may be able to describe his or her own mental processes, as they seem to occur, through introspection. Not only is this "metacognitive awareness" inevitably imperfect and incomplete, but the experience of it is directly accessible only to the person doing the introspecting. We use the term internal representation not to refer to the direct object of introspective activity, but as a 



construct at by an observer from the observation of behavior (including, of course, verbal and mathematical behavior). Although the experience of introspection is subjective, the descriptions that result from introspection are observable as, for example, verbal and gestural behavior. In developing a theory based on systems of internal representation, it is desirable for the sake of coherence and usefulness that the kinds of configurations that occur in the theory (i.e., internal representations inferred from observations) bear some resemblance to individuals´ descriptions of their own subjective awareness. However, it is essential that we clearly distinguish the term internal representation as used here from other perspectives that may involve ontological assumptions about "the mind."

In contrast to internal representation, we use the term external representation to refer to physically embodied, observable configurations such as words, graphs, pictures, equations, or computer microworlds. These are in principle accessible to observation by anyone with suitable knowledge. Of course the interpretation of external representations as belonging to structured systems, and the interpretation of their representing relationships, is not "objective" or "absolute" but depends on the internal representations of the individual(s) doing the interpreting.

For example, consider a graph drawn in Cartesian coordinates by a person to "represent" the equation y + 3x - 6 = 0. The particular graph is not an isolated drawing. It occurs within a system of coordinate representation, based on spe​cific (socially constructed) rules and conventions, which in turn must be (at least partially) "understood" before the representational act can take place. It is useful for us to consider the graph as an external configuration, and to treat the system of Cartesian coordinate representation as external to any one individual. We thus distinguish the external graph from the internal visual, kinesthetic, or other representations that the graph may evoke in an individual; we further distinguish the conventional system of Cartesian coordinate representation (external) from the individual's internal conceptual/procedural system of representation that may reference and interact with the external system. We stress that we do not regard the relation between such internal and external systems as direct or simple in any way—certainly the internal is not to be construed simply as a "mental picture" or "copy" of the external system.

Furthermore, the kind of conceptual entity that the graph "represents" may vary greatly from one context to another—for instance, this graph might be taken to represent a function f(x) = -3x + 6 rather than an equation, or it might represent the -relation between position and. time of an object moving west with a constant velocity of 3 meters per second, beginning 6 meters east of the origin, or it might represent the hypotenuse of a right triangle "facing to the right," whose base is 2 units long and whose height is 6 units, and so forth. The power and utility of the representation clearly depend on its being part of a structured system, and on the degree of flexibility or versatility in what it can represent.

Of special importance are the two-way interactions between internal and external representations. Sometimes an individual externalizes in physical form through acts stemming from internal structures—that is, acts of writing, speaking, manipulating the elements of some external concrete system, and so on. Sometimes the person internalizes by means of interactions with the external physical structures of a notational system, by reading, interpreting words and sentences, interpreting equations and graphs, and so on. Such interpretive acts can take place both at an active, deliberate level subject to conscious, overt control, and at a more passive, automatic level where the physical structures act on the individual as if "resonating" with previously constructed mental structures (Grossberg, 1980); thus natural language or familiar mathematical expressions are "understood" without deliberate, conscious mental activity. Interactions in both directions between internal and external representations can (and most often do) occur simultaneously.

Relations Between Representations
Sometimes when we speak of one configuration representing another, the reference is to two external configurations—a "horizontal" relation, if we imagine the external to be on one level and the internal to be on another as in Fig. 23.1. For example, we may say that the (external) graph represents the (external) symbolic expression f(x) = -3x + 6, or that it represents the (external, physically embodied) relation between position and time of a moving object, or an (external) right triangle. In such contexts, of course, the representing relationship is not usually physically embodied; it is the speaker (teacher, student, mathematician, researcher of learning, etc.) who asserts it, and it may range from an idiosyncratic definition, analogy, or metaphor to a widely agreed on mathematical convention.

Alternatively, we may want to stress a correspondence between an internal and an external configuration, the "vertical" dimension of representation in Fig. 23.1. For example, we may talk about whether or not a student, given the (external) configuration y = -3x+6,is able to visualize it (internally) as a straight line. Here, too, the representing relationship is not "preexisting in the situation"; it may be brought to it by the teacher, constructed by the student, and so forth.

Finally, one of two internal configurations can represent the other (again "horizontally")—as when a student mentally relates the (internal) visual image or kinesthetic encoding of a straight line with the (internal) symbolic configuration y=mx+b, with m representing the line's slope and b its y intercept in Cartesian coordinates. Such correspondences too do not inhere in the configurations themselves, but involve complex prior constructions achieved through representational acts.

This may be the place to emphasize, in case it is not already clear, that in distinguishing between internal representations ("mental configurations") and external 

representations ("physically embodied configurations"), we do not in particular intend to assert any sort of profound dualism between mind and matter. We simply regard external configurations as those accessible to direct observation (speech, written words, formulas, concrete manipulatives, computer microworlds as they appear on a screen, etc.), and internal configurations as those characteristics of the reasoning individual that are encoded in the human brain and nervous system and are to be inferred from observation.

Systematicity of Representational Forms
The examples cited—equations, graphs, relations between position and time, right triangles, internal visual and kinesthetic configurations—all illustrate the principle that representations should be seen as belonging to structured systems, whether embodied internally or externally. This systematicity is not a feature confined to mathematical representation. We see it in words, pictures, sculpture, architecture, and many other forms of external human representation. We see it in naturally occurring structures such as the genetic code, where sequences of bases in DNA may be said to represent biological phenotypes through structured biochemical processes. And we see it in internal human representation, as we begin to describe relations among thought structures. Indeed, if we take the goals of mathematics education to include the development in students of powerful representational tools (e.g., visualizing the analytic properties of functions through their graphs), we must certainly see the desired internal representations as belonging to complex systems whose rules and conventions are an essential part of the development.

As we have discussed elsewhere (Goldin, 1987, 1992a; Kaput, 1987, 1991), a representational system or symbol scheme can be understood as constructed from primitive characters or signs, which are sometimes but not always discrete (like spoken words, letters of the alphabet, or numerals). These signs are often embodied in some physical medium. Normally, however, the signs should not be understood literally as being their physical embodiments, but as (imperfectly defined) equivalence classes of embodiments, where equivalence is determined through acts of interpretation. Thus when we discuss “the graph of y+3x-6= 0” in the context of mathematics education, we do not usually mean a particular drawing or computer realization of that graph, nor do we usually mean a precise​ly defined, abstract mathematical construct. Rather we refer to a roughly bounded class of realizations "acceptable" to a community of users of coordinate graphs. In fact, the equivalence classes for an external representation may be thought of as the shared aspects of such a system, with any particular instance being a member of such a class (see Goodman, 1976, for a discussion of this issue).

It is helpful to think temporarily of the signs that form the building blocks of a system of representation simply as characters, without yet assuming them to have 

further “meaning” (that will come in a moment). In addition to the criteria, either implicit or explicit, that determine whether or not a particular embodiment of a sign or character is an allowable member of a particular system (an "in or out" issue), and if so, which character it is (an "identification" issue), a representational system also has rules for combining the signs into permitted configurations (the issue of operative "syntax"). Typically the system also possesses other "syntactic" structure—relations, networks, rules of procedure, formal grammar, and so on. Inevitably there is ambiguity in defining the characters, the configurations of characters, and the structures of representational systems, as well as the symbolic relationships among them; indeed, it has been noted that without such ambiguity, representations are almost useless (Davis, 1984).

Different Kinds of "Meaning"
Recalling Hilary Putnam's memorable expression "the meaning of meaning," we next discuss some distinct senses in which systems of representation may be said to "engender meaning" as they are interpreted. One of these senses involves interaction with relations within the system—the syntactic rules and other structures that make up the representational system. For example, in this "syntactic" sense, part of the meaning that the symbol "~" in a system of symbolic logic can be said to "have" (for an interpreting individual or system) is expressed in the axiom “(p) ~~p = p”. This aspect of the structure, although an essential component of the "meaning" of "~", is quite different from and independent of the interpretation that "~" stands for the English word not. Thus a second main sense of "meaning," a "semantic" sense, is that experienced by an individual or system interpreting the symbolic relationship between two systems of representation—that is, interpreting the correspondence between configurations in one system and configurations in the other (e.g., in the current example, between the symbol "~" and the word not). Here the correspondence is drawn between a character in formal logical notation, and a word in ordinary English, and the correspondence becomes part of one's understanding of both. The symbolic relationship between two distinct systems of representation consists of an (experienced or functional) correspondence of some kind between configurations in one, and configurations in the other. As noted earlier, there is no necessary direction to this correspondence; either system can be interpreted to "represent" or "symbolize" the other. And we have already remarked that there is considerable variability in the representing relationships that are possible in this "semantic" sense of meaning.

The decision to regard two systems of representation as distinct from each other, rather than as part of one larger system, is a matter of convenience and convention; thus the distinction between "syntactic" and "semantic" meaning is also conventional—but quite useful in discussions of mathematics, where formal, abstract structures are frequently to be distinguished from particular, concrete instances or interpretations.

There is a certain analogy between the preceding "syntactic" versus "semantic" distinction among kinds of meaning, and the earlier "horizontal" versus "vertical" distinction among representing relationships. The analogy is apparent if we think temporarily of internal representations as forming a single system, and external representations as forming another. Associated with the (vertical) connections between external and internal representations is a symbol-interpreta​tion process where the individual matches prior knowledge (in relation to the external representational system) with what he or she experiences as a result of interacting with the physical environment. Thus an external character is experienced as meaningful or not, according to whether it matches the individual's internal representation of characters in a system that for him or her is operative. Similarly, a combination of external system elements may be experienced as meaningful or not, depending on whether it matches expectations based on existing (internal) constructions of combinations of the system's elements. All this is analogous to the "semantic" sense of meaning. Alternatively, associated with the (horizontal) connections among internal representations is not only a process of the individual's matching prior internal structures of one sort with those of another, but also the processing that takes place within the structured system of internal representation; these are all further aspects of "meaningful" representational activity, analogous to the "syntactic" sense of meaning. Finally, there is a sense in which the (horizontal) connections among external representations, and the structural relationships that exist within external systems of representation, also embody "meaning"—namely, they encode contingencies that are susceptible to experience or interpretation. This too is analogous to meaning in the "syntactic" sense.

Let us illustrate these ideas with some examples. The numerals, letters, and arithmetical symbols of an algebraic system of notation are signs. Certain configurations of these signs are permitted (e.g., the equation “y + 3x - 6 = 0”); other configurations are not allowed and thus, in ordinary parlance, nonsensical (e.g., "y3x + = 6 0 -"); and still others are, as expected, ambiguous (e.g., depending on the context the expression "y=x3-6" might be understood to be a rather sloppy way of writing "y equals ;c cubed minus 6," or to be a way of expressing the equation "y = x times 3 minus 6"; alternatively, x could be construed in the original expression as a missing digit in a two-digit number; or the expression might simply be rejected as erroneous). In our standard system of algebraic notation there are not only signs and configurations, but considerable further structure that is essential to the utility of algebra, such as rules of procedure for moving from one configuration to another (e.g., for moving from "y + 3x - 6 = 0" to "y = -3x + 6"), for substituting values for variables (e.g., for determining from the latter expression that "when x = 1, we have y = 3"), and so forth.

Similarly, consider Cartesian coordinate graphs as a system of representation.

The "signs" of a Cartesian graph might be said to consist of two axes, a set of numerical and alphabetical labels, various geometric forms such as points, lines, parabolas and other curves, segments of arcs, and so forth. The axes must be labeled with letters, and configured to be mutually perpendicular; numerical labels must be appropriately attached to label the units of the axes. In addition there are (geometrical) rules for plotting ordered pairs of numbers as points and interpreting points as ordered pairs. The various constituents of this system can be said to have "meaning" in the (commonly shared, or idiosyncratic) individual experiences of their relationship to the larger structure of the system (e.g., as expressed in the statement, "that vertical line with the arrow pointing up means the y axis").

Let us regard these, the conventional formal notational symbol system of algebra and the system of Cartesian graphing, as two different external systems of representation. Now, associated with the (horizontal) reference relations between them, is a "semantic" sense of meaning in which a coordinate graph is generally understood to represent an algebraic equation—or alternatively, the equation can be thought of as representing the graph. These relations can be, but are not necessarily, represented externally when individual graphs are drawn or equations written.

Within the individual learner or problem solver are (we infer) internal representations, constructs that embody the individual's understandings of formal algebraic notation and of Cartesian graphing. These internal representational systems vary greatly from individual to individual, and vary over time within an individual as learning takes place. In the individual, there is a "semantic" sense of meaning associated with the relations that the configurations in these internal systems have with each other—individuals interpret their own internal represen​tations of graphs by means of their own internal representations of equations, and the reverse. The internal representations, and the semantic relationships between them, are at some level of development needed in order for external representations to be meaningfully interpreted by the individual.

Thus, by means of a rather elaborate development, we are able to talk with some precision about mathematical meanings, mathematical structures, and the ways in which individuals understand them through representational acts.

We close this section by again stressing two points. First, the direction of the correspondence between representations may vary with the representational act. Dugdale (1989) described a teaching experiment involving trigonometric identities, where she reversed the usual referential relationship in which graphs are thought of as the representing entities and the symbolic equations as the represented entities. This reversal led to substantial differences in students´ thinking and learning. The reversibility of representing relations depending on circumstances pertains to vertical as well as to horizontal relations. The Piagetian tradition refers to the "signified" as the mental (internal) construct and the "signifier" as the physical (external) one.

But we argue that this relation can be inverted whenever an external representation is interpreted by an individual, especially if the external representation is one that was not produced by the interpreter. In that case, the internal construct is acting to represent the external, physical configuration. Second, we note once more that a particular system can in general represent not just one but many others—a notational configuration in mathematics, such as an algebraic equation, can model many different kinds of other configurations drawn from different types of other representations, such as graphs, tables of numbers, physical quantities measured in laboratories, real-life situations, and so forth.

REPRESENTATION AND CONSTRUCTIVISM

External representations permit us to talk about mathematical relations and meaning apart from inferences concerning the individual learner or problem solver. Internal representations give us the framework for describing individual knowledge structures and problem-solving processes. Interactions between external and internal representational systems provide the means for making inferences about individuals, and for describing learning and development as a consequence of the learning environment and contingencies in that environment. Because the construct of representation is so useful in all of this, it is important to discuss at the outset some objections to our approach and to answer them. Many of the points offered in this section are elaborated further by Goldin (1990) and Kaput (1991). We then show how our ideas are compatible with the perspective that knowledge generally, and mathematical knowledge in particular, is actively constructed by learners—a perspective that has come to be known as "constructivist" (Herscovics, chapter 21, this volume).

Answers to Epistemological Objections
A radical constructivist objection to "representation" is that we have direct access only to our worlds of experience, not to any "external" world. Therefore, in this view, it is fundamentally wrong to term internal systems representational because there is nothing directly knowable that is being represented. Epistemologically, what is "out there" is not directly accessible; what we have access to is already internal. In this view (von Glasersfeld, 1987, and chapter 18, this volume), internal systems should be considered as systems of "presentation" rather than "representation."

To this we offer two replies. The first is that even within a strictly radical constructivist perspective, the term representation is fully justified—because internal configurations can (and do) symbolize or represent each other very flexible.

As already discussed, which configuration is taken as the representing one and which as the represented depends on the circumstances and intentions of the person involved. Usually there is another, "ambient" representational system involved (e.g., natural language), other than the two under discussion, which provides the context for such a decision—for example, a student may conceptualize an internally coded symbolic expression as representing a visualized graph, a visualized graph as representing a symbolic expression, or either one as representing a still different function concept. The choice may depend on the executive planning taking place as a problem is solved. Thus no one such configuration qualifies as purely "presented" without at the same time functioning with representational capabilities. One important consequence of this, as well as of the considerations that follow, is that the framework we offer is epistemologically independent of the tenets of radical constructivism.

Our second reply answers the objection from radical constructivist epistemology more fundamentally. It is that neither the external nor the internal systems we have discussed are intended to explain, to describe, or to "be" a person's world of experience. The distinction that we make between external and internal systems of representation is itself simply a constructed model, developed by an observer or community of theorists to help explain an individual's observed behavior, or the behavior of a population of individuals. Although our model is, in a sense, consistent with human beings' described experience of an "inside" and an "outside," internal "mental" experiences, thoughts, and feelings, as distinct from experiences an external "real" or "physical" world (a dichotomy that has developmental roots very early in the emergence of cognition), the model is not offered as something to be identified with this described experience. Rather it is intended only to organize and explain our observations of complex behavior, including of course the descriptions offered by individuals. Like any other theoretical scientific model, this one embodies several hypothetical constructs and relations, whose value and viability are to be confirmed or discontinued, through application and experimentation, based on how well they help others understand mathematical thinking, learning, and problem solving.

Besides the objection to our distinction between internal and external representation, there is a further objection from radical constructivists to our characterization of external representations as "having" structure. Because the only structures of experience are those constructed by a cognizing knower, the concept of a structured system of external representation is considered questionable.

To this we reply in the same vein, that the description of external systems of representation given here is (of course) constructed by the theorist or community of theorists, as is any scientific model or theory. It is not assumed to exist independently of such acts of construction. The "structures" in external systems are conjectured as embodying contingencies, possible interactions, potential relationships with internal systems, and so forth, in a way that is explanatory of behavior. 

This is the standard method of science: (a) to create structured models that embody relations among selected observables, (b) to use these relations to help generate hypotheses that can be tested, and (c) to explain the outcomes of observations. It is analogous to conjecturing possible structures within atoms and molecules based on observation and experiment, and using such models to understand chemical reactions, although, of course, we have no "direct access" to the structures involved. Thus the structure we ascribe to external linguistic and mathematical representational systems is a feature of an explanatory framework; it fulfills its explanatory role if it adequately describes culturally shared aspects of the internal representations of a community of mathematically experienced people, who interact with these external systems—that is, it is at some level observable within and across individuals. There is a place for it in our theory because shared mathematics is among the things for which we seek to account. Thus our approach is an accepted practice in scientific model-building, whose a priori rejection on philosophical grounds can only impede the progress of research.

The strict radical constructivist objections to our characterization of external systems of representation, or to the view that internal systems can be representational of external systems, are in some sense a mirror image of radical empiricist or behaviorist objections that can be raised against our characterization of internal systems! Such objections, which were taken extremely seriously in the 1950s and 1960s, today seem almost quaint. In a nutshell, the behaviorist position is (again based on a priori philosophical arguments) that external tasks, structures, representations, or environmental situations are recognized as valid constructs, because they are directly observable, and thus susceptible to scientific characterization. Likewise, human behavior (verbal or nonverbal) is directly observable, hence admissible into scientific consideration. But internal states are to be excluded from theoretical models, because they not observable except through introspection—which is a nonreproducible, and not independently verifiable, process. Thus internal representation (or even "presentation") has no place for the behaviorist in a scientifically sound psychology of learning or problem solving.

In reply, we note that again the error has been made of assuming internal systems of representation to describe that which is accessible via introspection, and only that. To us, internal representation, like external representation, is intended to be pan of a theoretical model explanatory of phenomena that can be observed. It is not a requirement of a scientific theory that its every component be directly observable, only that it have consequences that are observable. Radical behaviorism has been largely supplanted because models involving internal constructs do better in explaining our observations of behavior than models without them.

To sum up, we see no viable basis for rejecting internal representation, external

representation, or the broader concept of representation on a priori philosophical grounds.

Internal Representational Systems 

as Individual Constructions
Although some of our language and some of our constructs appear to be at odds with certain epistemological claims of constructivism, we are very much in agreement with the perspective that cognitive representations are internally constructed by learners and problem solvers (Steffe, Cobb, & von Glasersfeld, 1988). This position has been termed trivial constructivism, although it is in no sense trivial; we prefer Herscovics' characterization of it as a form of rational constructivism (Herscovics, chapter 21, this volume). Indeed, in our view one of the major challenges that theories of mathematics learning based on representation should address is that of modeling this constructive process, understanding the characteristics of external and internal representations that affect it, and facilitating its effective occurrence in students. We discuss this further later.

Having laid a foundation, let us now consider some different types of systems of representation that are of interest to the psychology of learning and doing mathematics.

TYPES OF REPRESENTATIONAL SYSTEMS 

AND THE MEDIA EMBODYING THEM
We begin by discussing some types of systems of representation, as well as the role of the physical media in which representation systems can be instantiated. In our view, characterizing both representational systems and their instantiating media in as much detail as possible is one of the most important means available for describing thought processes in mathematics and discussing how they are influenced.

This is so because thinking itself cannot take place without there occurring, again and again, representational acts—including acts of coordination of internal representations, and acts of interaction between internal and external representations in various media. As noted by Kaput (1991), we see the role of representational systems in organizing thinking as analogous to the role of architectural structures in organizing the activity of people within a working or living space. That is, we follow certain paths of thought (not in a deterministic way) to a considerable degree because they have been previously constructed. The representations in which they are encoded are "available" to us. Other paths that have never been constructed are not even considered as alternative thoughts, because they are beyond the realm of present imagination. Sometimes representational

systems, like architectural designs, operate without conscious awareness—especially after considerable experience with them—and at other times they are employed quite deliberately. On both sides of the analogy, some are the result of evolutionary processes, whereas others are the result of explicit design efforts. But the central point is that they both are organizers of experience, both physical and mental. And at times, wholly new paths are constructed.

Thus it is essential to get a handle on how different types of systems of representation, in varying degrees, support and constrain different kinds of thinking. What sons of objects, categories, and relations do they help us construct? What kinds of operations do they afford, and what kinds of efficiencies do they offer? And, just as important, what do they tend to prohibit? In approaching these function-oriented questions, we are beginning a simultaneous attack on the companion questions of "how" and "why."

We next consider some very broad classes of systems, and then distinguish subclasses among these. Each of the classes mentioned can be interpreted in relation to both external or internal representation. Furthermore, some systems may be essentially universal to human thinking (e.g., the object construct), whereas most others come to us as artifacts of our cultures and are widely shared within the respective cultures, but are not universal (e.g., specific natural languages). Still others are specialized and artificial (e.g., various mathematical notations) or largely idiosyncratic (e.g., symbolism drawn from meanings attached to personal memories). We first discuss differences in the physical media embodying external representational systems. Then we single out for discussion the following three dimensions of representational systems, suggested in each case as polar opposites: display versus action systems, imagistic or analogic versus conventional character-based or verbal systems, and formal versus informal systems. We consider both external, physical representation and internal, cognitive representation in relation to these categories. This section concludes with discussions of linked external representational systems, and of various internal systems of cognitive representation.

External Representational Systems, and Differences in 

Physical Media
Most external systems do not lie at one extreme with respect to the three dimensions just mentioned, and much of their variability results from differences in the physical media in which the systems are physically instantiated. It is possible to regard conventional mathematical representational systems as abstract systems capable of being, in principle, fully captured as systems of rules relative to some other representational system (independent of any particular medium). In this sense, mathematical representations are abstract objects with multiple potential physical instantiations. Practically, however, the differences in the information-carrying capabilities of different media have a strong impact on the features of actual systems instantiated within them,

and, in fact, different features are instantiated concretely in different media.

This is easily seen in the example of natural language. Natural language is regarded as a character-based system (in the case of most western languages) when instantiated in inert media such as symbols on paper. But when instantiated as purely spoken language in a sound-based medium as experienced when talking on the telephone, for example, inflection, tone, and other information-carrying dimensions come directly into play. And if the spoken language is experienced visually on a person-to-person basis, the added dimensions of gesture and facial expression enter. On the other hand, in the inert, two-dimensional spatial medium of symbols on paper, the spatial dimensions afford the possibility of nonserial processing of the text in a way that spoken language does not! Of course, considerable learning of the character-based coding system is required before one can use language in its two-dimensional spatial form, because language is first learned in the sound-based and visual medium—indeed, studies of infant language learning are illustrating the strong ties between the rhythms of kinesthetic action and those of spoken language.

The changes in the representational characteristics of systems are so great when one changes the medium that it can be misleading to try to examine the properties of systems apart from the media in which they are instantiated. Instead we seek to understand more fully how the features of media jointly determine the features of representation systems instantiated within them. To begin, let us examine some of the differences among physical media that are especially significant to the doing and learning of mathematics. In what follows we largely ignore many details that are also of significance, but perhaps less so for mathematics— for example, in two-dimensional static media such as paper, besides the location and shape of characters based on spatial dimensions, there is the dimension of color; within color, there are hue and intensity; within the sound-based medium there are dimensions of amplitude and pitch; and so forth.

What are the fundamental features of media that are critical to mathematical thinking? We suggest here that one begin with three basic distinctions:

1. Dynamic versus static media.

2. Interactive versus inert media.

3. Recording versus nonrecording media.

These three properties are mainly independent of one another. We regard them as fundamental because each affects the way in which actions and representational features are distributed between internal and external representations.

Let us first note how distinctions 1 and 2 differ. Traditional television or video is a dynamic but not an interactive medium. Although one can adjust features of the video or change the program one is watching, one cannot interact with the content of a particular program—the newscaster will not answer the viewer's questions!. 

On the other hand, a traditional calculator is interactive, but static. Its display responds to the user's inputs, but the displays themselves do not change without that input. Of course, computers can be both dynamic and interactive.

Let us now consider how the relation between internal and external representations may be affected by the characteristics of the physical media involved. Characteristics 1 and 2 have much to do with constraining where actions can or must occur. In the case of static media, dynamic changes must be projected onto static external representations through internal (mental) acts—one imagines the motion of the projectile, the filling of the tank, and so on. Of course, many techniques and conventions have been developed to assist in these mental acts, such as drawing conventions like the use of arrows or "wind marks," the depiction of sequences of states, and others. In the case of a dynamic medium, the change is supplied externally to the interpreter, who, instead of needing to generate the change, can experience it perceptually. Recent work in neurophysiology (Kosslyn & Koenig, 1992) has shown that neurologically, some of the same activity occurs whether one visualizes motion or whether one observes motion; more generally, certain areas of the brain are activated either by external optic stimuli or by internally generated processing described as experienced visualization or production of mental imagery. Further, a key learning development is the ability to produce a version of dynamical phenomena internally, without perceptual stimulus.

In the case of the second distinction mentioned, interactive versus inert media, there is a certain basic sense (according to our "interactivist" account given earlier) in which all external representational systems, in whatever medium, are interactive. But we have a narrower characterization in mind (Kaput, 1992): we mean here interaction that involves a physical contribution from the notation system and the medium in which it is instantiated. We thus characterize a medium as "inert" if the only state-change resulting from a user's input is the display of that input, as when one writes on a piece of paper. The key difference with representations instantiated in interactive media is the addition of something new to the result of a user's actions, something to which the user may then respond. In inert media, the user can only respond to what he or she has directly produced. Any external response to the input must be made by a third party, such as a teacher, tutor, or peer, who happens to be observing, but it does not come from the physical embodiment of the representational system with which the user is interacting. (Note, by the way, that a system may be interactive—e.g., a bicycle—without necessarily functioning representationally.) Among the most interesting kinds of representational interactive systems are those of the type embodying some form of "agent" that performs some task for the person interacting with it, far example, a computer algebra system. This example highlights our basic point about the distribution of actions between the user and the external system. With an inert external system, the user must supply all the strategic direction and any intermediate actions, based on internal activity, or at

least based on activity extrinsic to the system, whereas an interactive system can supplant some of that activity—the internal representational activity of the learner or problem solver is redistributed outward.

The third feature of media that we emphasize relates to their different abilities to capture a record of actions taken. This feature's importance is centered in its impact on memory and the subsequent effects on mathematical activity. The redistribution, with a record-preserving medium, is from short- or long-term human memory (internal) to the external record. The profound impact of the development of writing on civilization is mainly rooted in the preservation of long-term records, but various mathematical representational systems developed in part because they help overcome the shortcomings of working memory, such as the placeholder system and the computational algorithms based on it, and aspects of our system of algebraic notation.

Because records are so ubiquitous, the importance of capturing them is easy to underestimate. After all, whenever we write on a piece of paper, we are producing records. This is in contrast to the inputs and states of a traditional hand-held calculator, where each new input overwrites the old and there is no record kept. However, there is now the potential for capturing more than the inert records that are produced with inert media such as paper. It is possible in interactive media to create computationally active records that can be replayed, reused as active components in other procedures, and so on. Computer programs are one version of such external representations, but are not normally created in an automatic way as a record of one's activity. Given that a major factor in conceptual growth involves the "re-presentation" of records of activity (Steffe, von Glasersfeld, Richards, & Cobb, 1983), the ability to create new types of external records can have a major impact on the learning process.

In summary, the three properties of media that we have discussed—dynamic versus static, interactive versus inert, and recording versus nonrecording or ephemeral—have a powerful controlling effect on the representational systems that are encoded in media having those properties. The impact is based on the effects on the interaction between internal and external systems, and how mental (internal) actions are or can be externalized.

Display Versus Action Representations 

and the Role of Media
We now wish to point to how traditional representational systems can be changed when one changes the medium in which they are instantiated. We refer to an external representation as an action representation if it contains rules or mechanisms for the manipulation of its elements, and a display representation if it does not. For example, in inert media coordinate graphs are usually used primarily to display quantitative relationships. There are relatively few ways in which one acts directly on such a graph after one has produced it. Likewise, tables are mainly display representations – one 

produces them initially, but one does not normally transform them in inert media. In contrast, our algebraic system of representation is designed (actually, it evolved) to support actions on the configurations that one produces to generate new configurations. Such actions may, for example, transform a given algebraic statement into other equivalent forms that can better reveal certain quantitative relationships, or may change the quantitative relationships in some systematic way. Although at any given point the algebraic statement acts to display a relationship (or function, series, integral, etc.), the key feature of the algebraic system, as developed mainly in the 17th century, is to provide support for rule-based action on its configurations.

However, the basic underlying characteristic of a representational system, of providing display representations rather than action representations, can be altered when one changes from an inert to an interactive medium! Tables that are instantiated in an interactive computer medium can become highly action oriented, and the actions can be expanded to form a spreadsheet. In the case of coordinate graphs one can again achieve a fundamental change from display to action representations, by moving to interactive media. New coordinate graph systems in the computer medium support direct actions on the graphs—besides rescaling of a graph (which is analogous to making a change in the form of an algebraic expression to a quantitatively equivalent one), one can perform all manner of translations, stretches, flips, and so forth of the graph itself (Confrey, 1993). The point here is that by changing the physical medium in which a representation system is instantiated to one that has additional structure, one can change its basic representational characteristics.

In the case of internal representations there is no issue of instantiating medium; rather, the question is the individual's power to carry out actions within the representational system. Powerful internal representations tend to be dynamic, action representations, in that the learner or problem solver has capabilities of acting on them or transforming them mentally—for example, translating the graph of a function. An individual who can mentally represent a graph, but cannot mentally act on the representation, has more limited mathematical capabilities, and the internal representations are more static in nature. Thus changes in physical media that permit external representations to be action rather than display representations give these representations one characteristic of powerful internal representations.

Imagistic or Ana logic Systems
Imagistic or analogic representational systems refer to systems in which the fundamental characters, signs, and configurations are neither verbal nor formal in nature, but bear some interpreted sensory resemblance to what is represented. The term imagistic can be interpreted broadly to include internal imagery and image-schematic representation—that which is "imagined", visualized, represented kinesthetically and /or

uditorily (e.g., objects and their attributes); it can also include external enactive and pictorial representations, concrete embodiments and manipulatives, computer-generated depictions, and so forth. The term analogic is suggestive of the possibility that the way in which the representations carry meaning may be through analogy and even metaphor, rather than through more direct sensory constructions. For instance, cardboard cut-outs of geometrical shapes provide an external, imagistic representational system that relies little on analogy or metaphor; a pictorial representation of data in which larger pictures of objects stand for more objects, or larger areas stand for greater numerical quantities, is more directly analogic.

It is our view that internal, imagistic representation is essential to virtually all mathematical insight and understanding, ranging from the concept of number and "number sense," to the meanings of arithmetical operations and geometrical constructions, to the understanding of equations and functions through Cartesian graphs. Interactions with external, imagistic representations are important to facilitating the construction of powerful internal imagistic systems in students.

Formal Systems
By formal systems of representation, we mean those have been consciously constructed to achieve specific, overt goals, and for which the rules are explicit rather than tacit. Thus what we call mathematical systems of representation— systems of numeration, algebraic systems of notation, and so on—are, in general, formal to a considerable degree. In contrast, informal systems have evolved with predominantly tacit rules—spoken natural language is in large part an informal representational system. Sometimes more or less informal systems are later formalized, and among the important acts of formalization is the explication of formerly tacit rules. It is clear that the process of developing mathematics over the centuries has involved many acts of formalization, such as the introduction of formal notations and the creation of definitions, axioms, and methods of proof.

The introduction of pictorial or iconic systems of writing, followed by character-based syllabaries and alphabets to represent spoken sounds, resulted in increasingly formalized ways of representing language over many centuries. The grammar and syntax of natural language have been increasingly formalized in much more recent times. It is noteworthy, in both the domain of mathematics and the domain of natural language, that the process of formalization has a functional aspect—it serves important purposes, ranging from convenience of communication and use, (o economy of description, to problem-solving power. As these functional aspects influence the development of formal systems, the resulting systems acquire structure and can be discussed as structured representational systems apart from the functions that drove their development.

Just as the development of formal external representational systems involves more explicit, less tacit, constructive processes, the development of formal internal system

differs from that of informal systems. To some extent, as children learn mathematics, they will engage in acts of formalization of previously less formal systems, and to some extent, they will construct new systems through formal acts based on increasingly explicit rules. The effective construction of formal internal representational systems (internal representations of numerals, numeration, and arithmetic operations; internal representations of algebraic notation and problem-solving procedures; etc.) depends in large part on the interplay between these systems as formal, explicitly rule-based procedural systems, and other less formal systems that permit the formal systems to be interpreted through representational acts. Thus we seek to make concrete and explicit the distinction between "meaningful" and "rote" learning of rule-based systems.

Linked External Representations
Yet another way in which the medium can affect representational activity is by linking representations. It is possible to link representations in nonelectronic media—for example, one can rig physical equipment in such a way that measurements are displayed or graphed as one acts on the equipment, as was done in most instructional physics laboratories for many years. Today, however, a new order of magnitude of sophistication in linking external representations has been achieved in the interactive computer medium.

Let us look more closely at what one might mean by linked representations. If one produces, for example, an equation and its coordinate graph on the same sheet of paper, in what sense might one say that they are linked? Physically, the external representations are not linked at all, except perhaps in the very weak sense of adjacency. Internally, as display representations, they might be linked in the mind of the person who produced them (via internal representations), or they might be linked in the mind of a person who reads them (again, via internal representations), in the sense that the person is able to integrate the cognitive structures for each. A weak form of such an internal integration is that given one of the external representations, the individual is able to predict, identify, or even produce its counterpart. However, a much stronger kind of integration via inter​nal representations is that given an action upon one of the external representa​tions, the individual is able to predict, identify, or produce the results of the corresponding action on its external counterpart, perhaps even providing intermediate representational configurations. It is here, at the action level, that the direct linking of external representations in interactive media plays a role, be​cause the; opportunity is afforded to integrate such prediction, identification, or production activity across representations. By acting in one of the externally linked representations and either observing the consequences of that action in the other representational system or making an explicit prediction about the second representational system to compare with the effect produced by actions in the linked representation, one experiences the linkages in new ways and is provided with new opportunities for internal constructions. 

Some experience has now been accumulated with such linked systems in the area of algebra and mathematical functions (Confrey, 1993; Yerushalmy, 1991). A promising additional context involves computer-linked manipulatives for elementary mathematics. Up to now there has been no way physically to link manipulatives that represent quantities, quantitative relationships, and (especially) actions on these to other more formal representational systems. Such manipulatives as Dienes blocks, Cuisenaire rods, and Unifix cubes could be treated as external action representation systems in classroom activity—but in order to link manipulative representations cognitively with more formal mathematical counterparts, one was limited to serial translations of actions.

For example, the child learning mathematics could act in one external representational system, say, using Dienes blocks (with the child's actions constrained or supported fairly loosely through instructional text, or the teacher's directions). Then the child could act in a second external representational system, say, written numerals organized in the usual placeholder style. Opportunities for prediction and comparison exist but are rather limited. The child, encouraged by the teacher, could compare the results of the two actions—but to compare all the intermediate actions, overwhelmingly detailed orchestration involving recording intermediate states of the blocks is needed (Thompson, 1992). This example illustrates two intrinsic shortcomings of physical manipulatives: the lack of physical linkability to other representational systems, and the ephemeral nature of actions in such systems. Each action on a state of the external system "overwrites" the previous state to produce a new one, with no record of the prior state remaining. Many pedagogically based attempts have been made to overcome these difficulties over the years, but without convincing success. Computer-linked manipulatives provide a new opportunity to attack the problem but give us no guarantees. Much experimentation will be needed, with computer-based representations, with various forms of records produced, with many different types of linkages, and with accompanying pedagogical approaches, to maximize the utility of the new representational tools (Kaput, 1994a).

Internal Systems of Cognitive Representation
We conclude this section with some comments on five types of mature, internal cognitive representational systems, proposed by Goldin (1982, 1983, 1987) as a model for mathematical problem-solving competency structures, and developed further in the context of mathematical learning, conceptual development, and assessment (Goldin, 1988a, 1988b, 1992a, 1992b; Goldin & Herscovies, 1991a, 1991 b). These are (a) verbal/syntactic systems, (b) imagistic systems, (c) formal notational systems, (d) a system of planning, monitoring, and executive control, and finally (e) a system of affective representation. All these types of internal representation are regarded as psychologically "fundamental." They occur universally, not only in mathematical problem solvers, but (possibly excepting formal notational systems) in all normal human beings.

A verbal/syntactic system of representation describes the person’s capabilities for processing natural language, on the level of words, phrases, and sentences (only). This system includes verbal "dictionary information" such as common definitions and verbal descriptions, word-word associations such as synonyms, related phrases, and antonyms, word-category relationships, and the parsing of sentences based on grammar and syntax information. Verbal/syntactic configurations can represent configurations in other systems—imagistic, formal, heuristic, or affective configurations are all described in words. There are also self-referential capabilities in natural language, with words and sentences being used to describe words and sentences. It is useful to think of internal, verbal/syntactic representation as partially formal, and not imagistic or analogic. This is a dynamic representational system; it is culturally provided (so that it is meaningful to speak also of external verbal/syntactic systems of representation), but universal in its occurrence as an internal system. It may be valid to regard such internal systems as modeled on a deeper level of internal representation, associated with the Chomskian notion of the "deep structure" of language.

Several different imagistic cognitive representational systems are proposed, the most important of which for describing mathematical learning and problem solving are visual / spatial, auditory / rhythmic, and tactile / kinesthetic systems. The term imagistic here is intended to have the broader connotations discussed earlier. Internal, imagistic systems incorporate nonverbal configurations at the level of objects, attributes, relations, and transformations. Their inclusion in a unified psychological model allows the description of how semantic structures influence mathematical problem solving. Imagistic capabilities are necessary for the meaningful or insightful interpretation verbal statements, and encode students' nonverbal, nonquantitative conceptions and misconceptions. Internal visual/spatial representation corresponds roughly to what Kosslyn (1980) calls "quasi-pictorial." Internal auditory/rhythmic representation in mathematics is evidenced, for example, by children learning to count or recite multiplication tables in rhythm, accenting numbers in groups as they make use of "counting-on" strategies for early addition, and so forth. Internal tactile/kinesthetic representation refers to imagined physical actions by or on the person (distinguished here from imagined sights or spatial transformations)—a kind of internal version of the sort of representation Bruner called "enactive." Comprehension of spoken or written language includes the ability to access or construct internal imagistic configurations that appropriately correspond to verbal/syntactic configurations. Likewise, comprehension of formal mathematical symbols includes quite sophisticated imagistic capabilities. Furthermore, the characters or configurations in verbal or formal representational systems can be treated as "objects" and processed imagistically for example, in manipulating algebraic symbols, the student may learn to “bring the unknown variable x over to the left-hand-side of the equation” as if the x itself were an object. Internal imagistic representations are in general highly nonformal, action representations (although children often learn, unfortunately, to treat mathematical images

exclusively as static displays). Imagery is highly individualistic, with some apparently universal elements of structure (such as the object construct).

Formal mathematical notations as external representations are typically a major focus of mathematics instruction. The internal systems of competencies associated with the construction and manipulation of such configurations are yet another type of cognitive representational system. Such constructs internal to the mathematical learner or problem solver can be modeled by talking about symbol manipulation, rules, algorithms, bugs in algorithms, searches through formal problem spaces, and so forth. Although some cognitive processing can be seen as occurring within a system of formal notation (e.g., the execution of an algorithm), meaningful understanding in mathematics has more to do with relationships that formal configurations of symbols have to other kinds of internal representation—being able to represent and discuss why an algorithm works, interpreting formal notational descriptions imagistically and visualized situations formally, and so on. Formal notational representations are (mostly) constructed from culturally provided, conventional systems. Typically they have much less redundancy than natural language, and unlike natural language, the formal notational systems of mathematics are not universal in human cultures. Internal formal notational representations may be static or dynamic, and may have imagistic features to them (e.g., the internal construct of a Cartesian graph).

Another cognitive representational system in Goldin's model is taken to plan, monitor, and control mathematical problem solving processes. The configura​tions of this system are organized into heuristic processes. In a sense this internal system relates metacognitively to the others, as it includes competencies for a number of actions that can be applied to configurations in the other systems, and in itself. These include keeping track of some of the processing, deciding the next steps to be taken during learning or problem solving, as well as modifying other systems—deciding to improve the formal notation, for instance. However, each one of the internal systems in the model can represent information about the others (as well as simply configurations within the others), and each can also represent information about itself. Thus no one system is taken to be uniquely metacognitive. The system of planning, monitoring, and executive control is neither a formal system nor an imagistic one. It is a dynamic representational system, partly provided through the culture and partly individually generated. It is likely that aspects of such a system occur universally in human beings (e.g., some use of "trial and error" or "subgoal decomposition" in problem solving), whereas other aspects are specific to certain cultures or individuals.

A system of affective representation is proposed as a fifth type of internal representational system. This is needed not only to model learning and problem solving effectively, but to allow a discussion of affective as well as cognitive educational goals in mathematics—maximizing enjoyment and positive self-concept, for example. Affective representation is neither formal nor imagistic. It seems to occur universally in human

beings, and is highly dynamic, referring not just to relatively stable, attitudinal constructs in relation to mathematics (what Goldin has called global affect, and which can be regarded as fairly static), but to the rapidly changing feelings of problem solvers during problem solving (local affect), such as curiosity, puzzlement, bewilderment, frustration, anxiety, fear, despair, encouragement, pleasure, elation, and satisfaction, with one mood changing rapidly to another depending on cognitive events. Thus such affect does not occur independently of cognition; it is utilized during learning and problem solving (DeBellis & Goldin, 1991; Goldin, 1988a; McLeod & Adams, 1989). This suggests we consider affective competencies, taking the affect appropriate for problem solving as something learnable and teachable. The interaction between affect and imagery, and between affect and heuristics, is subtle, deep, and worthy of further exploration.

TYPES OF REPRESENTATIONAL ACTS

AND STRUCTURES
We have discussed various types and characteristics of representations and representational systems to a considerable extent. Next we consider briefly some basic types of representational structures, and acts that exploit these structures. External, physical systems of representation seem to have evolved at least partly as means for overcoming human cognitive limitations: limitations in memory, and in processing capability. Both personal and social representational acts, whether or not they are deliberately undertaken within the systematic constraints of particular, culturally developed systems (e.g., a system of algebraic notation and manipulation), often amount to efforts to overcome one or more of these limitations. Here we describe a few general features of representational structures and acts from this point of view.

One-for-Many Representing Relationships
An extremely powerful, widely used representational act uses one representational element to stand for many others, or to stand for a sequence of elements. When this occurs internally, it has sometimes been called "chunking." An example involves the concept of counting number, where a single entity (the numeral, represented externally or internally) can stand for a set having that cardinality, or (more abstractly), for an equivalence class of such sets, or for a sequence of physical acts (counting) together with its outcome, and so on. The one-for-many relationship is also used within most numeration systems (Nickerson, 1986), where one symbol often stands for several “lower level” units—as the Roman numeral V stands in a way for IIIII. This representational relationship takes external form in the physical notations we use. It is useful when inscriptions are

costly in some way, in time or space, physical effort, and so on. But it has an especially important, complementary function internally, which is to support cognitive activity (e.g., managing working memory load). As is well appreciated, the internal cognitive development of one-for-many correspondences can be initially a laborious process.

One-for-Complexity Representational Substitutions
A related representational structure (actually a more general version of the preceding) is the substitution of a single representational element for a complex web of representational elements. This occurs when a letter or word is used to stand for a possibly elaborate picture or diagram, or when an ordered pair of symbols stands for an abstract mathematical entity: say, (G, *) used to represent a group G under the operation *. Frequently the substitution is based on equivalence, where a single representational element is used in place of an equivalence class, and rules for handling these elements are based on their class representatives, as with fractions in arithmetic, or quotient objects in abstract algebra. Goodman (1976) pointed out that we use such equivalence class exemplars in almost all character-based systems. Besides representing complex objects by simpler symbols, one can represent complex processes by symbols. One might use a single set of symbols to stand for a process, as in Leibniz' notation for derivatives. Such a structure again has complementary functions, both internal and external. It helps to alleviate working memory load, which in turn supports another critical function in mathematics, the building of more complex systems.

Selected Deletion
Many representations involve a process of selected deletion from other representations, with certain kinds of details systematically omitted. Most maps and diagrams employ this approach, as do most practical applications of geometry. This is one important way that representations support the key process of idealization in mathematics and science.

Reification
Some representations provide an external, physical notation, and related internal configurations, for symbolizing entities that are not usually described as physically experienced. This is the case for virtually any abstraction (indeed, it comes close to a possible definition of abstraction), and is also the case for environmental or cognitive events that have physical occurrence, but do not leave a trace or do not leave a satisfactory trace. For example, in a computer-based manipulatives environment, one might have the computer create some form of record of the sequence of actions that a user performs (Kaput, 1995). Further, the system could provide means for denoting various 

strategies for such actions. Psychologically, the introduction of the representing configuration "reifies" the represented entity—according to it a "reality" or "existence" so that it can be discussed or manipulated through its representation. The decision to represent a problem solver's strategy or choice of steps using a computer reifies those entities in this sense, as does the decision to represent a new mathematical or abstract physical construct.

Time-Space Substitutions, and Ordinal Substitutions Generally
Whenever events or changes take place they do so in time-meaning that in the domain of everyday experience, they are inherently ordered. A representational technique used frequently is to represent the time-ordered sequence of events along another inherently ordered instrument, the line in space. Likewise one can order the outcomes of measurements that vary across time by using time axes in various ways, a technique pioneered by the Scholastics (Kaput, 1994b). Such representational techniques provide means of capturing the dynamic aspects of phenomena in static media. They also generalize from the ordinal representation of temporal events, to more general representation of ordering with respect to other sorts of variables.

Additional Representational Structures and Actions
As already noted, computers bring us forms of representation that are not possible in inert media, as most traditionally embodied in interactive computer programs (Kaput, 1992). Here the input of something (like a number or expression), the adjustment of a parameter, or other action on a representational element can result in a certain type of computational processing—a representational element is connected to a response system of some kind or another (e.g., a spreadsheet or other agent). Representations in interactive media also provide constraints and supports for actions on them. Thus they can provide connections between deeply different types of experience. For example, one can superimpose a discrete structure on continuous phenomena by segmenting and counting chunks, or vice versa, by interpolating between points or otherwise embedding individual discrete points in a continuum, and one can do this through external, interactive representation.

One aspect of the power of formal representations is that they can provide common representational configurations that connect or unify not only different kinds of phenomena but also different levels of abstraction. Many different forms of metonymy are used to support generalization in mathematics through forma) representations, as when one uses the traditional symbols for addition and multiplication in the definition of an abstract ring or field (Pimm, 1987).

Of course, all of the foregoing representational structures and actions can be iterated, and each takes many different forms. Furthermore, they can be combined with each in various ways—sequentially, in various kinds of networks, and as already discussed, in cross-representational linkages.

We believe that this perspective on the problem of representation—looking at the larger classes of functional structures—can provide a great deal of classificatory and explanatory power.

THE GROWTH OF REPRESENTATIONAL SYSTEMS

Our account thus far has concentrated on the function of representation, especially its mature function, without yet discussing either the long-term development of representational systems or the complexities of their use in actual practice. What are the important processes through which new representations (internal and external, in close connection with each other) develop or emerge, within individuals, short- and long-term, in short-term social contexts, or historically? And how do representations come to be related to one another?

Various researchers have begun to focus attention on such questions, particularly on how representations evolve in shared exploration and problem-solving contexts, identifying the reciprocal role of individuals in modifying socially constructed systems of representation. Microgenetic analyses of representational behavior reveal considerable fluidity and complexity. For example, it is not uncommon for a particular complex of inscriptions to evolve in such a way that the semiotic function of its elements changes dramatically over a short period of time (Meira, 1992). In ongoing work, Kaput is studying these questions with particular emphasis on computational media. Of special importance to the design of appropriate representations in learning environments is how series of representations of varying levels of abstractness can be chained and coordinated, to link students' "common-sense-based" understandings of phenomena with those based in the kinds of abstractions appropriate for scientific and mathematical understanding (White, 1993).

Human beings have a number of very powerful representational capabilities that are reflected in the functional structures just discussed. Many of these seem to emerge, almost automatically, across many different cultures. Among these is the ability to declare or establish an equivalence among many discrete entities, and then to treat the equivalence class as a single entity. We see this with word meanings, for instance; we see it in the use of metonymy, where a single prototypical element acts for the class (e.g., in the example of fractions mentioned earlier). Another related capability important to mathematical understanding is that of taking a complex entity (like a matrix or a function), "packaging it up" and treating it as if it were a (unitary) object (e.g., an element of a vector space of functions or a group of linear operators), then "opening the package up" when necessary to examine its structure or properties.

To whatever degree a theory governing the construction of internal systems can be proposed, we have the beginning of an understanding of mathematical learning and development that goes beyond addressing the acquisition of discrete skills, or particular concepts, or even schemas. One element of such a theory involves identifying stages in their development. Drawing on a variety of ideas, three main stages in the development of representational systems were summarized by Goldin: (a) an inventive-semiotic stage, (b) a period of structural development, and (c) an autonomous stage.

In the inventive-semiotic stage (Piaget, 1969, p. 31), new characters are created or learned, and from the outset are used to symbolize aspects of a prior representational system. The latter is regarded as a kind of template for the development of the new system. The act of assigning meaning or symbolization is called semiotic and the prior system serves as a semantic domain for the new symbols. With regard to cognitive representations, the new characters during this stage are often considered not to symbolize, but to actually "be" the aspects of the prior system that they represent; this can lead to cognitive obstacles in the learning of mathematics.

During the stage of a new representational system called structural-developmental, the development or construction is driven principally by structural features of the earlier system. This process makes use of the symbolization that was established in the first stage. In this way configurations are built up from characters, and a syntax for the new system is constructed. Symbolic relationships for the new system other than those already established, or contradictory to those already established, do not in general occur during this stage—as the structure of the new system seems at this point to be a necessary or inevitable consequence of the meanings of the new signs and configurations in the semantic domain of the previous system. Those meanings are typically referred to as the "real" meaning. Over time the new characters and configurations become no longer discrete, unrelated entities, but part of a larger structure (which is the new representational system).

The third stage is called an autonomous stage. The new system of representation, now mature, separates from the old. It can at this point stand in symbolic relationships with systems different from the one that was the template driving its development. As these new possibilities occur, the transfer of "meaning" (or, in the case of internal representations, of competencies) from old to new domains becomes possible.

The development of internal representational systems through such stages requires interaction with external representational structures ranging from spoken language to mathematical constructions. Following this development and trying to trace it allows, our opinion, the unification of a great deal of cognitive theory. The model has been applied to conceptual development in mathematics, especially children's early arithmetic (Goldin & Herscovics, 1991a, 1991b; Mulligan, Thomas, & Goldin, 1994).

BUILDING POWERFUL REPRESENTATIONAL 

SYSTEMS AS A GOAL OF LEARNING
Most often, the goals of instruction in mathematics are defined in terms of the kinds of problems we want students to be able to solve, or the particular skills and concepts we want them to have. But these formulations of learning goals tend to limit the vision we bring to mathematics education. The reason for this is that such goals do not embody capabilities for spontaneous new constructions, for extension to unfamiliar situations, for synthesis of new strategies when necessary, or for creative mathematical acts. One of the major reasons for our emphasis on internal representational systems is that they provide a means for characterizing the outcomes of learning in a much more valuable way.

Instead of traditional learning goals, we propose to formulate educational goals in mathematics in terms of the kinds of internal systems of representation we would like students to have available. We think it is possible to outline a relatively small, manageable set of broad, internal representational capabilities, whose effective interaction makes for powerful problem solving. It is also possible to describe more specialized, internal, mathematical representational systems that have a wide range of applicability. Both of these provide ways of defining what we seek in effective mathematics education.

In the school mathematics curriculum as it is most often implemented, the most attention is paid to formal symbolic systems of representation. Students are expected to "internalize" our base-10 system of numeration and associated procedural rules for addition, subtraction, multiplication, and division of whole numbers written in base 10. They are expected to extend these methods to fractional, decimal, and algebraic systems of formal representation as conventionally developed. Much less attention is given to the (equally mathematical) imagistic systems—techniques of visualization, mental rotation, diagram drawing and interpretation, spatial projection, and so forth. Less attention is also given to heuristic systems of planning and decision making for effective problem solving, and to the development of powerful, helpful affect. Internal representational systems are normally influenced by interactions with external systems in the way they develop. Furthermore, as has recently been stressed (Meira, 1991), the act of construction of external representations is critical to the construction of internal representations. Thus the choices of problems for students to solve, of classroom activities in mathematics for them to participate in, and of external constructions for them to address need to be examined with respect to the kinds of internal representations we want them to develop.

Let us discuss briefly some of the things we mean by "powerful" in this context. One meaning of powerful is that a system of representation has a wide and varied domain of applicability—it can be applied in different contexts, and the system has "meaning" (in the semantic sense discussed earlier) in relation to many different other representations. This aspect of representational power we call versatility. Earlier we mentioned, as an

example, the different meanings that could be given to a graph. The capability of constructing graphical representation with versatility has to be seen as a major educational objective in mathematics.

Another sense of powerful has to do with efficiency of procedural use. Efficiency can be embodied in the syntax of a system of representation (particularly, in a formal system), so that the system supports transformations with facility from one configuration to another from which insights can be gained. In this sense, the Hindu-Arabic system of numeration is more "efficient" than Roman numerals. This aspect of representational power we call efficiency of syntax. It is easiest to characterize in the case of formal, procedurally oriented mathematical systems of representation, such as the formal systems of arithmetic and algebra, where the syntax and rules of procedure are well defined. It is much harder to describe, but just as important, for less formal systems. For internal systems of representation, efficiency of procedural use is likewise most easily measurable in formal contexts—which is why "skill tests" tend to predominate as assessment instruments in mathematics education, and more authentic forms of assessment are neglected.

Still another kind of power in a representational system has to do with its effectiveness in abstracting essential features from representations in other systems, and encoding these features in a way that makes them accessible, or exhibits essential relationships to some degree. This aspect-we call the efficiency of encoding. This can be an especially salient property of imagistic systems, where the abstracted features may be made directly visible (Goldin, 1982). In principle, efficiency of syntax or efficiency of encoding can characterize either formal or imagistic systems, either external or internal.

Other aspects of representational power include the capability of a system to encode general or broad relationships in a very small set of characters (e.g., a characteristic of the representational power of algebraic notation), and the capability of supporting systematic actions on representational elements (Mahoney, 1980).

We thus stress increasing the power of representations as a goal, both in the external representations we use in mathematics and in teaching mathematics, and in the internal representational capabilities that enable individuals to employ all the kinds of functional representational structures described here. For problem solving and learning in mathematics, Goldin's model stresses the special importance of powerful heuristic, imagistic, and affective systems of representation.

CONCLUSION AND COMMENTS
We have seen how many different aspects of mathematical learning and problem solving can be described through the construct of representation. It allows us to talk descriptively about what students can and cannot do, and to discuss prescriptively what

capabilities we would like them to develop. It permits considerable careful analysis of structural properties important in mathematics, and a discussion of effects due to the media in which external configurations are embodied. Because the description of how representational systems develop over time involves both semiotic acts (through which representations acquire a certain sort of meaning) and the structural development of new systems (through being built on the "templates" provided by prior representational systems), we see that the notion of representation—far from standing in opposition to constructivist theorizing—is actually an extremely helpful theoretical tool for characterizing con​structive processes in the learning and doing of mathematics.

There is certainly a lot more to be said, and many directions in which research can go. One promising direction, in our opinion, is further investigation into what makes systems of representation powerful. With the creation of software for symbol manipulation in mathematical systems, and for visual representation and manipulation of mathematical constructs, we are moving toward the ability to design mathematical representational systems consciously and systematically, rather than inventing them through isolated, widely separated creative acts. Through the invention of new representational systems, mathematics that once was highly complex (e.g., the arithmetic of fractions in ancient notations) is today accessible to children. We believe that the construction of new representational systems will likewise make some of today's complicated mathematics seem very simple in the future, and that an understanding of the psychology of mathematical learning and problem solving based on systems of representations can help to bring that about.
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�This chapter was substantially written during 1991-1992, with final revisions in 1994. The authors' current work extends many of the ideas introduced here and will appear in subsequent publications.
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